vllm/tests/models/test_chameleon.py

103 lines
3.1 KiB
Python
Raw Normal View History

import re
from typing import List, Optional, Type
import pytest
from vllm.multimodal.utils import rescale_image_size
from ..conftest import IMAGE_ASSETS, VllmRunner, _ImageAssets
pytestmark = pytest.mark.vlm
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"USER: <image>\nWhat's the content of the image?\nASSISTANT:",
"cherry_blossom":
"USER: <image>\nWhat is the season?\nASSISTANT:",
})
models = ["facebook/chameleon-7b"]
#TODO (ywang96): Add correctness test when chameleon is
# available on transformers.
def run_test(
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
model: str,
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Test if the model can generate text given
a batch of images and prompts.
"""
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
with vllm_runner(model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
for prompts, images in inputs_per_image:
vllm_outputs = vllm_model.generate_greedy(prompts,
max_tokens,
images=images)
for i in range(len(vllm_outputs)):
# format prompt back to original
replacements = {
"<racm3:break>": "",
"<eoss>": "",
"<reserved08706>": ""
}
pattern = '|'.join(replacements.keys())
vllm_result = re.sub(
pattern,
lambda match: replacements[match.group(0)], #noqa B023
vllm_outputs[i][1])
vllm_result = vllm_result.replace("<image>", "", 1023)
assert vllm_result[:len(prompts[i])] == prompts[i]
# assert at least 10 new characters are generated
# (to take stop token into account)
assert len(vllm_outputs[i][1]) - len(prompts[i]) > 10
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(vllm_runner, image_assets, model, size_factors, dtype: str,
max_tokens: int) -> None:
run_test(
vllm_runner,
image_assets,
model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
tensor_parallel_size=1,
)