2023-11-15 22:50:41 -08:00
|
|
|
from abc import ABC, abstractmethod
|
2023-12-15 19:04:22 +08:00
|
|
|
from typing import Any, Dict, List, Optional
|
2023-11-15 22:50:41 -08:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
|
|
|
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
|
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
|
|
from vllm.model_executor.parallel_utils.communication_op import (
|
|
|
|
tensor_model_parallel_all_reduce, tensor_model_parallel_all_gather)
|
|
|
|
from vllm.model_executor.parallel_utils.utils import (
|
|
|
|
divide, split_tensor_along_last_dim)
|
|
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
from vllm.logger import init_logger
|
|
|
|
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class LinearMethodBase(ABC):
|
|
|
|
"""Base class for different (maybe quantized) linear methods."""
|
|
|
|
|
|
|
|
@abstractmethod
|
2023-12-15 19:04:22 +08:00
|
|
|
def create_weights(self, input_size_per_partition: int,
|
|
|
|
output_size_per_partition: int, input_size: int,
|
|
|
|
output_size: int,
|
|
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
2023-11-15 22:50:41 -08:00
|
|
|
"""Create weights for a linear layer."""
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def apply_weights(self,
|
|
|
|
weights: Dict[str, torch.Tensor],
|
|
|
|
x: torch.Tensor,
|
|
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
"""Apply the weights to the input tensor."""
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
class UnquantizedLinearMethod(LinearMethodBase):
|
|
|
|
"""Linear method without quantization.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
separate_bias_add: If true, add bias separately after matrix
|
|
|
|
multiplication.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, separate_bias_add: bool = False):
|
|
|
|
self.separate_bias_add = separate_bias_add
|
|
|
|
|
2023-12-15 19:04:22 +08:00
|
|
|
def create_weights(self, input_size_per_partition: int,
|
|
|
|
output_size_per_partition: int, input_size: int,
|
|
|
|
output_size: int,
|
|
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
|
|
weight = Parameter(torch.empty(output_size_per_partition,
|
|
|
|
input_size_per_partition,
|
2023-11-15 22:50:41 -08:00
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=params_dtype),
|
|
|
|
requires_grad=False)
|
|
|
|
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
|
|
|
return {"weight": weight}
|
|
|
|
|
|
|
|
def apply_weights(self,
|
|
|
|
weights: Dict[str, torch.Tensor],
|
|
|
|
x: torch.Tensor,
|
|
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
weight = weights["weight"]
|
|
|
|
if self.separate_bias_add:
|
|
|
|
if bias:
|
|
|
|
return F.linear(x, weight) + bias
|
|
|
|
return F.linear(x, weight)
|
|
|
|
return F.linear(x, weight, bias)
|
|
|
|
|
|
|
|
|
|
|
|
class ReplicatedLinear(torch.nn.Module):
|
|
|
|
"""Replicated linear layer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_size: input dimension of the linear layer.
|
|
|
|
output_size: output dimension of the linear layer.
|
|
|
|
bias: If true, add bias.
|
|
|
|
skip_bias_add: If true, skip adding bias but instead return it.
|
|
|
|
params_dtype: Data type for the parameters.
|
|
|
|
linear_method: (Maybe quantized) linear method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_size: int,
|
|
|
|
output_size: int,
|
|
|
|
bias: bool = True,
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# Keep input parameters
|
|
|
|
self.input_size = input_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
self.params_dtype = params_dtype
|
|
|
|
if linear_method is None:
|
|
|
|
linear_method = UnquantizedLinearMethod()
|
|
|
|
self.linear_method = linear_method
|
|
|
|
self.linear_weights = self.linear_method.create_weights(
|
2023-12-15 19:04:22 +08:00
|
|
|
self.input_size, self.output_size, self.input_size,
|
|
|
|
self.output_size, self.params_dtype)
|
2023-11-15 22:50:41 -08:00
|
|
|
for name, weight in self.linear_weights.items():
|
2023-12-15 19:04:22 +08:00
|
|
|
if isinstance(weight, torch.Tensor):
|
|
|
|
self.register_parameter(name, weight)
|
2023-11-15 22:50:41 -08:00
|
|
|
if bias:
|
|
|
|
self.bias = Parameter(
|
|
|
|
torch.empty(self.output_size,
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=self.params_dtype))
|
|
|
|
set_weight_attrs(self.bias, {"output_dim": 0})
|
|
|
|
else:
|
|
|
|
self.register_parameter("bias", None)
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
|
|
output = self.linear_method.apply_weights(self.linear_weights, x, bias)
|
|
|
|
output_bias = self.bias if self.skip_bias_add else None
|
|
|
|
return output, output_bias
|
|
|
|
|
|
|
|
|
|
|
|
class ColumnParallelLinear(torch.nn.Module):
|
|
|
|
"""Linear layer with column parallelism.
|
|
|
|
|
|
|
|
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
|
|
its second dimension as A = [A_1, ..., A_p].
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_size: first dimension of matrix A.
|
|
|
|
output_size: second dimension of matrix A.
|
|
|
|
bias: If true, add bias.
|
|
|
|
gather_output: If true, call all-gather on output and make Y available
|
|
|
|
to all GPUs, otherwise, every GPU will have its output
|
|
|
|
which is Y_i = XA_i
|
|
|
|
skip_bias_add: This was added to enable performance optimizations where
|
|
|
|
bias can be fused with other element-wise operations. we
|
|
|
|
skip adding bias but instead return it.
|
|
|
|
params_dtype: Data type for the parameters.
|
|
|
|
linear_method: (Maybe quantized) linear method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_size: int,
|
|
|
|
output_size: int,
|
|
|
|
bias: bool = True,
|
|
|
|
gather_output: bool = False,
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# Keep input parameters
|
|
|
|
self.input_size = input_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.gather_output = gather_output
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.output_size_per_partition = divide(output_size, tp_size)
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
self.params_dtype = params_dtype
|
|
|
|
if linear_method is None:
|
|
|
|
linear_method = UnquantizedLinearMethod()
|
|
|
|
self.linear_method = linear_method
|
|
|
|
self.linear_weights = self.linear_method.create_weights(
|
2023-12-15 19:04:22 +08:00
|
|
|
self.input_size, self.output_size_per_partition, self.input_size,
|
|
|
|
self.output_size, self.params_dtype)
|
2023-11-15 22:50:41 -08:00
|
|
|
for name, weight in self.linear_weights.items():
|
2023-12-15 19:04:22 +08:00
|
|
|
if isinstance(weight, torch.Tensor):
|
|
|
|
self.register_parameter(name, weight)
|
|
|
|
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
|
2023-11-15 22:50:41 -08:00
|
|
|
if bias:
|
|
|
|
self.bias = Parameter(
|
|
|
|
torch.empty(self.output_size_per_partition,
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=params_dtype))
|
|
|
|
set_weight_attrs(self.bias, {
|
|
|
|
"output_dim": 0,
|
|
|
|
"weight_loader": self.weight_loader,
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
self.register_parameter("bias", None)
|
|
|
|
|
|
|
|
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
output_dim = getattr(param, "output_dim", None)
|
|
|
|
param_data = param.data
|
|
|
|
if output_dim is not None:
|
|
|
|
shard_size = param_data.shape[output_dim]
|
|
|
|
start_idx = tp_rank * shard_size
|
|
|
|
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
|
|
shard_size)
|
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
|
|
|
|
|
|
# Matrix multiply.
|
|
|
|
output_parallel = self.linear_method.apply_weights(
|
|
|
|
self.linear_weights, input_, bias)
|
|
|
|
if self.gather_output:
|
|
|
|
# All-gather across the partitions.
|
|
|
|
output = tensor_model_parallel_all_gather(output_parallel)
|
|
|
|
else:
|
|
|
|
output = output_parallel
|
|
|
|
output_bias = self.bias if self.skip_bias_add else None
|
|
|
|
return output, output_bias
|
|
|
|
|
|
|
|
|
|
|
|
class MergedColumnParallelLinear(ColumnParallelLinear):
|
|
|
|
"""Packed linear layers with column parallelism.
|
|
|
|
|
|
|
|
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
|
|
|
along the output dimension. When the weight matrix is loaded, the
|
|
|
|
different partitions are sharded separately.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_size: input dimension of the linear layer.
|
|
|
|
output_sizes: list of output dimensions of the linear layer.
|
|
|
|
bias: If true, add bias.
|
|
|
|
gather_output: If true, call all-gather on output and make the output
|
|
|
|
available to all GPUs, otherwise, every GPU will have
|
|
|
|
its own output.
|
|
|
|
skip_bias_add: This was added to enable performance optimizations where
|
|
|
|
bias can be fused with other element-wise operations. we
|
|
|
|
skip adding bias but instead return it.
|
|
|
|
params_dtype: Data type for the parameters.
|
|
|
|
linear_method: (Maybe quantized) linear method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_size: int,
|
|
|
|
output_sizes: List[int],
|
|
|
|
bias: bool = True,
|
|
|
|
gather_output: bool = False,
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
):
|
|
|
|
self.output_sizes = output_sizes
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
|
|
|
super().__init__(input_size, sum(output_sizes), bias, gather_output,
|
|
|
|
skip_bias_add, params_dtype, linear_method)
|
|
|
|
|
|
|
|
def weight_loader(self,
|
|
|
|
param: Parameter,
|
|
|
|
loaded_weight: torch.Tensor,
|
|
|
|
loaded_shard_id: Optional[int] = None):
|
|
|
|
param_data = param.data
|
|
|
|
output_dim = getattr(param, "output_dim", None)
|
|
|
|
if loaded_shard_id is None:
|
|
|
|
# Loaded weight is already packed.
|
|
|
|
if output_dim is None:
|
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
return
|
|
|
|
current_shard_offset = 0
|
|
|
|
shard_offsets = []
|
|
|
|
for i, output_size in enumerate(self.output_sizes):
|
|
|
|
shard_offsets.append((i, current_shard_offset, output_size))
|
|
|
|
current_shard_offset += output_size
|
|
|
|
packed_dim = getattr(param, "packed_dim", None)
|
|
|
|
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
|
|
# If quantized, we need to adjust the offset and size to account
|
|
|
|
# for the packing.
|
|
|
|
if packed_dim == output_dim:
|
|
|
|
shard_size = shard_size // param.pack_factor
|
|
|
|
shard_offset = shard_offset // param.pack_factor
|
|
|
|
loaded_weight_shard = loaded_weight.narrow(
|
|
|
|
output_dim, shard_offset, shard_size)
|
|
|
|
self.weight_loader(param, loaded_weight_shard, shard_id)
|
|
|
|
return
|
|
|
|
|
|
|
|
assert loaded_shard_id < len(self.output_sizes)
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
if output_dim is not None:
|
|
|
|
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
|
|
|
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
|
|
|
# If quantized, we need to adjust the offset and size to account
|
|
|
|
# for the packing.
|
|
|
|
packed_dim = getattr(param, "packed_dim", None)
|
|
|
|
if packed_dim == output_dim:
|
|
|
|
shard_size = shard_size // param.pack_factor
|
|
|
|
shard_offset = shard_offset // param.pack_factor
|
|
|
|
param_data = param_data.narrow(output_dim, shard_offset,
|
|
|
|
shard_size)
|
|
|
|
start_idx = tp_rank * shard_size
|
|
|
|
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
|
|
shard_size)
|
|
|
|
else:
|
2023-12-15 19:04:22 +08:00
|
|
|
ignore_warning = getattr(param, "ignore_warning", False)
|
|
|
|
if not ignore_warning:
|
|
|
|
logger.warning(
|
|
|
|
"Loading a weight without `output_dim` attribute in "
|
|
|
|
"MergedColumnParallelLinear, assume the weight is "
|
|
|
|
"the same for all partitions.")
|
2023-11-15 22:50:41 -08:00
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
|
|
|
|
|
|
class QKVParallelLinear(ColumnParallelLinear):
|
|
|
|
"""Linear layers for the attention's QKV transformation.
|
|
|
|
|
|
|
|
Linear layers for the linear transformation of the query, key, and value
|
|
|
|
vectors in the attention layer. The weight matrix is concatenated along
|
|
|
|
the output dimension. The layer is parallelized along the head dimension.
|
|
|
|
When the number of key/value heads is smaller than the number of query
|
|
|
|
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
|
|
|
be replicated while the query heads are partitioned.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
hidden_size: input hidden state size of the transformer.
|
|
|
|
head_size: size of each attention head.
|
|
|
|
total_num_heads: total number of attention query heads.
|
|
|
|
total_num_kv_heads: total number of attention key/value heads. If
|
|
|
|
None, assume total_num_kv_heads = total_num_heads.
|
|
|
|
bias: If true, add bias.
|
|
|
|
skip_bias_add: This was added to enable performance optimizations where
|
|
|
|
bias can be fused with other element-wise operations. we
|
|
|
|
skip adding bias but instead return it.
|
|
|
|
params_dtype: Data type for the parameters.
|
|
|
|
linear_method: (Maybe quantized) linear method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
hidden_size: int,
|
|
|
|
head_size: int,
|
|
|
|
total_num_heads: int,
|
|
|
|
total_num_kv_heads: Optional[int] = None,
|
|
|
|
bias: bool = True,
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
):
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.head_size = head_size
|
|
|
|
self.total_num_heads = total_num_heads
|
|
|
|
if total_num_kv_heads is None:
|
|
|
|
total_num_kv_heads = total_num_heads
|
|
|
|
self.total_num_kv_heads = total_num_kv_heads
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.num_heads = divide(self.total_num_heads, tp_size)
|
|
|
|
if tp_size >= self.total_num_kv_heads:
|
|
|
|
self.num_kv_heads = 1
|
|
|
|
self.num_kv_head_replicas = divide(tp_size,
|
|
|
|
self.total_num_kv_heads)
|
|
|
|
else:
|
|
|
|
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
|
|
|
self.num_kv_head_replicas = 1
|
|
|
|
input_size = self.hidden_size
|
|
|
|
output_size = (self.num_heads +
|
|
|
|
2 * self.num_kv_heads) * tp_size * self.head_size
|
|
|
|
super().__init__(input_size, output_size, bias, False, skip_bias_add,
|
|
|
|
params_dtype, linear_method)
|
|
|
|
|
|
|
|
def weight_loader(self,
|
|
|
|
param: Parameter,
|
|
|
|
loaded_weight: torch.Tensor,
|
|
|
|
loaded_shard_id: Optional[str] = None):
|
|
|
|
param_data = param.data
|
|
|
|
output_dim = getattr(param, "output_dim", None)
|
|
|
|
if loaded_shard_id is None:
|
|
|
|
# Loaded weight is already packed.
|
|
|
|
if output_dim is None:
|
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
return
|
|
|
|
shard_offsets = [
|
|
|
|
# (shard_id, shard_offset, shard_size)
|
|
|
|
("q", 0, self.total_num_heads * self.head_size),
|
|
|
|
("k", self.total_num_heads * self.head_size,
|
|
|
|
self.total_num_kv_heads * self.head_size),
|
|
|
|
("v", (self.total_num_heads + self.total_num_kv_heads) *
|
|
|
|
self.head_size, self.total_num_kv_heads * self.head_size),
|
|
|
|
]
|
|
|
|
packed_dim = getattr(param, "packed_dim", None)
|
|
|
|
for shard_id, shard_offset, shard_size in shard_offsets:
|
|
|
|
# If quantized, we need to adjust the offset and size to account
|
|
|
|
# for the packing.
|
|
|
|
if packed_dim == output_dim:
|
|
|
|
shard_size = shard_size // param.pack_factor
|
|
|
|
shard_offset = shard_offset // param.pack_factor
|
|
|
|
loaded_weight_shard = loaded_weight.narrow(
|
|
|
|
output_dim, shard_offset, shard_size)
|
|
|
|
self.weight_loader(param, loaded_weight_shard, shard_id)
|
|
|
|
return
|
|
|
|
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
assert loaded_shard_id in ["q", "k", "v"]
|
|
|
|
if output_dim is not None:
|
|
|
|
if loaded_shard_id == "q":
|
|
|
|
shard_offset = 0
|
|
|
|
shard_size = self.num_heads * self.head_size
|
|
|
|
elif loaded_shard_id == "k":
|
|
|
|
shard_offset = self.num_heads * self.head_size
|
|
|
|
shard_size = self.num_kv_heads * self.head_size
|
|
|
|
elif loaded_shard_id == "v":
|
|
|
|
shard_offset = (self.num_heads +
|
|
|
|
self.num_kv_heads) * self.head_size
|
|
|
|
shard_size = self.num_kv_heads * self.head_size
|
|
|
|
# If quantized, we need to adjust the offset and size to account
|
|
|
|
# for the packing.
|
|
|
|
packed_dim = getattr(param, "packed_dim", None)
|
|
|
|
if packed_dim == output_dim:
|
|
|
|
shard_size = shard_size // param.pack_factor
|
|
|
|
shard_offset = shard_offset // param.pack_factor
|
|
|
|
param_data = param_data.narrow(output_dim, shard_offset,
|
|
|
|
shard_size)
|
|
|
|
shard_id = tp_rank // self.num_kv_head_replicas
|
|
|
|
start_idx = shard_id * shard_size
|
|
|
|
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
|
|
|
shard_size)
|
|
|
|
else:
|
2023-12-15 19:04:22 +08:00
|
|
|
ignore_warning = getattr(param, "ignore_warning", False)
|
|
|
|
if not ignore_warning:
|
|
|
|
logger.warning(
|
|
|
|
"Loading a weight without `output_dim` attribute in "
|
|
|
|
"QKVParallelLinear, assume the weight is the same "
|
|
|
|
"for all partitions.")
|
2023-11-15 22:50:41 -08:00
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
|
|
|
|
|
|
class RowParallelLinear(torch.nn.Module):
|
|
|
|
"""Linear layer with row parallelism.
|
|
|
|
|
|
|
|
The linear layer is defined as Y = XA + b. A is parallelized along
|
|
|
|
its first dimension and X along its second dimension as:
|
|
|
|
- -
|
|
|
|
| A_1 |
|
|
|
|
| . |
|
|
|
|
A = | . | X = [X_1, ..., X_p]
|
|
|
|
| . |
|
|
|
|
| A_p |
|
|
|
|
- -
|
|
|
|
Arguments:
|
|
|
|
input_size: first dimension of matrix A.
|
|
|
|
output_size: second dimension of matrix A.
|
|
|
|
bias: If true, add bias. Note that bias is not parallelized.
|
|
|
|
input_is_parallel: If true, we assume that the input is already
|
|
|
|
split across the GPUs and we do not split
|
|
|
|
again.
|
|
|
|
skip_bias_add: This was added to enable performance optimization where
|
|
|
|
bias can be fused with other element-wise operations.
|
|
|
|
We skip adding bias but instead return it.
|
|
|
|
params_dtype: Data type for the parameters.
|
|
|
|
linear_method: (Maybe quantized) linear method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_size: int,
|
|
|
|
output_size: int,
|
|
|
|
bias: bool = True,
|
|
|
|
input_is_parallel: bool = True,
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
|
|
reduce_results: bool = True,
|
|
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
# Keep input parameters
|
|
|
|
self.input_size = input_size
|
|
|
|
self.output_size = output_size
|
|
|
|
self.input_is_parallel = input_is_parallel
|
|
|
|
self.reduce_results = reduce_results
|
|
|
|
if params_dtype is None:
|
|
|
|
params_dtype = torch.get_default_dtype()
|
|
|
|
self.params_dtype = params_dtype
|
|
|
|
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.input_size_per_partition = divide(input_size, self.tp_size)
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
if linear_method is None:
|
|
|
|
linear_method = UnquantizedLinearMethod()
|
|
|
|
self.linear_method = linear_method
|
|
|
|
self.linear_weights = self.linear_method.create_weights(
|
2023-12-15 19:04:22 +08:00
|
|
|
self.input_size_per_partition, self.output_size, self.input_size,
|
|
|
|
self.output_size, self.params_dtype)
|
2023-11-15 22:50:41 -08:00
|
|
|
for name, weight in self.linear_weights.items():
|
2023-12-15 19:04:22 +08:00
|
|
|
if isinstance(weight, torch.Tensor):
|
|
|
|
self.register_parameter(name, weight)
|
|
|
|
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
|
2023-11-15 22:50:41 -08:00
|
|
|
|
|
|
|
if not reduce_results and (bias and not skip_bias_add):
|
|
|
|
raise ValueError("When not reduce the results, adding bias to the "
|
|
|
|
"results can lead to incorrect results")
|
|
|
|
|
|
|
|
if bias:
|
|
|
|
self.bias = Parameter(
|
|
|
|
torch.empty(self.output_size,
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=params_dtype))
|
|
|
|
set_weight_attrs(self.bias, {
|
|
|
|
"output_dim": 0,
|
|
|
|
"weight_loader": self.weight_loader,
|
|
|
|
})
|
|
|
|
else:
|
|
|
|
self.register_parameter("bias", None)
|
|
|
|
|
|
|
|
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
input_dim = getattr(param, "input_dim", None)
|
|
|
|
param_data = param.data
|
|
|
|
if input_dim is not None:
|
|
|
|
shard_size = param_data.shape[input_dim]
|
|
|
|
start_idx = tp_rank * shard_size
|
|
|
|
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
|
|
|
|
shard_size)
|
|
|
|
assert param_data.shape == loaded_weight.shape
|
|
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
|
|
def forward(self, input_):
|
|
|
|
# Set up backprop all-reduce.
|
|
|
|
if self.input_is_parallel:
|
|
|
|
input_parallel = input_
|
|
|
|
else:
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
splitted_input = split_tensor_along_last_dim(
|
|
|
|
input_, num_partitions=self.tp_size)
|
|
|
|
input_parallel = splitted_input[tp_rank].contiguous()
|
|
|
|
|
|
|
|
# Matrix multiply.
|
|
|
|
output_parallel = self.linear_method.apply_weights(
|
|
|
|
self.linear_weights, input_parallel)
|
|
|
|
if self.reduce_results and self.tp_size > 1:
|
|
|
|
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
|
|
|
else:
|
|
|
|
output_ = output_parallel
|
|
|
|
|
|
|
|
if not self.skip_bias_add:
|
|
|
|
output = output_ + self.bias if self.bias is not None else output_
|
|
|
|
output_bias = None
|
|
|
|
else:
|
|
|
|
output = output_
|
|
|
|
output_bias = self.bias
|
|
|
|
return output, output_bias
|