2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2024-08-06 07:54:23 +08:00
|
|
|
"""
|
|
|
|
Tests gguf models against unquantized models generations
|
|
|
|
Note: To pass the test, quantization higher than Q4 should be used
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
2025-01-13 08:13:44 +08:00
|
|
|
from typing import List, NamedTuple, Type
|
2024-08-06 07:54:23 +08:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
from huggingface_hub import hf_hub_download
|
2024-08-20 05:30:14 +08:00
|
|
|
from transformers import AutoTokenizer
|
2024-08-06 07:54:23 +08:00
|
|
|
|
|
|
|
from tests.quantization.utils import is_quant_method_supported
|
|
|
|
|
2025-01-13 08:13:44 +08:00
|
|
|
from ....conftest import VllmRunner
|
2024-09-14 01:20:06 +08:00
|
|
|
from ...utils import check_logprobs_close
|
2024-08-06 07:54:23 +08:00
|
|
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
|
|
|
|
|
|
|
MAX_MODEL_LEN = 1024
|
|
|
|
|
|
|
|
|
2025-01-13 08:13:44 +08:00
|
|
|
class GGUFTestConfig(NamedTuple):
|
|
|
|
original_model: str
|
|
|
|
gguf_repo: str
|
|
|
|
gguf_filename: str
|
|
|
|
|
|
|
|
@property
|
|
|
|
def gguf_model(self):
|
|
|
|
return hf_hub_download(self.gguf_repo, filename=self.gguf_filename)
|
|
|
|
|
|
|
|
|
|
|
|
LLAMA_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="meta-llama/Llama-3.2-1B-Instruct",
|
|
|
|
gguf_repo="bartowski/Llama-3.2-1B-Instruct-GGUF",
|
|
|
|
gguf_filename="Llama-3.2-1B-Instruct-IQ4_XS.gguf",
|
|
|
|
)
|
|
|
|
|
|
|
|
QWEN2_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="Qwen/Qwen2.5-1.5B-Instruct",
|
|
|
|
gguf_repo="Qwen/Qwen2.5-1.5B-Instruct-GGUF",
|
|
|
|
gguf_filename="qwen2.5-1.5b-instruct-q6_k.gguf",
|
|
|
|
)
|
|
|
|
|
|
|
|
PHI3_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="microsoft/Phi-3.5-mini-instruct",
|
|
|
|
gguf_repo="bartowski/Phi-3.5-mini-instruct-GGUF",
|
|
|
|
gguf_filename="Phi-3.5-mini-instruct-IQ4_XS.gguf",
|
|
|
|
)
|
|
|
|
|
|
|
|
GPT2_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="openai-community/gpt2-large",
|
|
|
|
gguf_repo="QuantFactory/gpt2-large-GGUF",
|
|
|
|
gguf_filename="gpt2-large.Q4_K_M.gguf",
|
|
|
|
)
|
|
|
|
|
|
|
|
STABLELM_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="stabilityai/stablelm-3b-4e1t",
|
|
|
|
gguf_repo="afrideva/stablelm-3b-4e1t-GGUF",
|
|
|
|
gguf_filename="stablelm-3b-4e1t.q4_k_m.gguf",
|
|
|
|
)
|
|
|
|
|
|
|
|
STARCODER_CONFIG = GGUFTestConfig(
|
|
|
|
original_model="bigcode/starcoder2-3b",
|
|
|
|
gguf_repo="QuantFactory/starcoder2-3b-GGUF",
|
|
|
|
gguf_filename="starcoder2-3b.Q6_K.gguf",
|
|
|
|
)
|
|
|
|
|
2025-01-21 05:23:14 +01:00
|
|
|
DOLPHIN_CONFIG = GGUFTestConfig(
|
|
|
|
# Test VocabParallelEmbedding sharding issue.
|
|
|
|
original_model="cognitivecomputations/TinyDolphin-2.8-1.1b",
|
|
|
|
gguf_repo="tsunemoto/TinyDolphin-2.8-1.1b-GGUF",
|
|
|
|
gguf_filename="tinydolphin-2.8-1.1b.Q6_K.gguf",
|
|
|
|
)
|
|
|
|
|
2025-01-13 08:13:44 +08:00
|
|
|
MODELS = [
|
2025-01-21 17:15:27 -08:00
|
|
|
LLAMA_CONFIG, QWEN2_CONFIG, PHI3_CONFIG, GPT2_CONFIG, STABLELM_CONFIG,
|
2025-01-21 05:23:14 +01:00
|
|
|
DOLPHIN_CONFIG
|
2025-01-13 08:13:44 +08:00
|
|
|
# STARCODER_CONFIG, # broken
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2024-08-06 07:54:23 +08:00
|
|
|
@pytest.mark.skipif(not is_quant_method_supported("gguf"),
|
|
|
|
reason="gguf is not supported on this GPU type.")
|
2025-01-13 08:13:44 +08:00
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
2024-08-06 07:54:23 +08:00
|
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
2024-08-20 05:30:14 +08:00
|
|
|
@pytest.mark.parametrize("tp_size", [1, 2])
|
2024-08-06 07:54:23 +08:00
|
|
|
def test_models(
|
2025-01-13 08:13:44 +08:00
|
|
|
num_gpus_available: int,
|
|
|
|
vllm_runner: Type[VllmRunner],
|
|
|
|
example_prompts: List[str],
|
|
|
|
model: GGUFTestConfig,
|
2024-08-06 07:54:23 +08:00
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
num_logprobs: int,
|
2024-08-20 05:30:14 +08:00
|
|
|
tp_size: int,
|
2024-08-06 07:54:23 +08:00
|
|
|
) -> None:
|
2024-08-20 05:30:14 +08:00
|
|
|
if num_gpus_available < tp_size:
|
|
|
|
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
|
|
|
|
|
2025-01-13 08:13:44 +08:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model.original_model)
|
|
|
|
if tokenizer.chat_template is not None:
|
|
|
|
messages = [[{
|
|
|
|
'role': 'user',
|
|
|
|
'content': prompt
|
|
|
|
}] for prompt in example_prompts]
|
|
|
|
example_prompts = tokenizer.apply_chat_template(
|
|
|
|
messages, tokenize=False, add_generation_prompt=True)
|
2024-08-20 05:30:14 +08:00
|
|
|
|
2024-08-06 07:54:23 +08:00
|
|
|
# Run unquantized model.
|
2025-01-21 17:15:27 -08:00
|
|
|
with vllm_runner(
|
|
|
|
model_name=model.original_model,
|
|
|
|
enforce_eager=True, # faster tests
|
|
|
|
dtype=dtype,
|
|
|
|
max_model_len=MAX_MODEL_LEN,
|
|
|
|
tensor_parallel_size=tp_size) as original_model:
|
2024-08-06 07:54:23 +08:00
|
|
|
original_outputs = original_model.generate_greedy_logprobs(
|
|
|
|
example_prompts[:-1], max_tokens, num_logprobs)
|
|
|
|
|
|
|
|
# Run gguf model.
|
2025-01-13 08:13:44 +08:00
|
|
|
with vllm_runner(model_name=model.gguf_model,
|
2025-01-21 05:23:14 +01:00
|
|
|
enforce_eager=True,
|
2025-01-13 08:13:44 +08:00
|
|
|
tokenizer_name=model.original_model,
|
2024-08-06 07:54:23 +08:00
|
|
|
dtype=dtype,
|
|
|
|
max_model_len=MAX_MODEL_LEN,
|
2024-08-20 05:30:14 +08:00
|
|
|
tensor_parallel_size=tp_size) as gguf_model:
|
2024-08-06 07:54:23 +08:00
|
|
|
gguf_outputs = gguf_model.generate_greedy_logprobs(
|
|
|
|
example_prompts[:-1], max_tokens, num_logprobs)
|
|
|
|
|
|
|
|
check_logprobs_close(
|
|
|
|
outputs_0_lst=original_outputs,
|
|
|
|
outputs_1_lst=gguf_outputs,
|
|
|
|
name_0="original",
|
|
|
|
name_1="gguf",
|
|
|
|
)
|