vllm/csrc/quantization/fp8/fp8_cuda_kernels.cu

127 lines
3.8 KiB
Plaintext
Raw Normal View History

[Kernel] FP8 support for MoE kernel / Mixtral (#4244) This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208 It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
2024-04-23 18:18:23 -07:00
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "cuda_compat.h"
#include "dispatch_utils.h"
namespace vllm {
__device__ __forceinline__ float atomicMaxFloat(float* addr, float value) {
float old;
old = (value >= 0) ? __int_as_float(atomicMax((int*)addr, __float_as_int(value))) :
__uint_as_float(atomicMin((unsigned int*)addr, __float_as_uint(value)));
return old;
}
// Compute the absolute maximum m of the input tensor and store
// m / float8_e4m3::max() in *scale. Each thread block performs a
// reduction tree and the memory in scale is atomically updated.
// So to get the right answer, *scale needs to be initialized to
// a value <= 0.0 and we need to wait for all thread blocks to
// finish before consuming *scale.
template<typename scalar_t>
__global__ void segmented_max_reduction(
float* __restrict__ scale,
const scalar_t* __restrict__ input,
int64_t num_elems) {
__shared__ float cache[1024];
int i = blockDim.x * blockIdx.x + threadIdx.x;
// First store maximum for all values processes by
// the current thread in cache[threadIdx.x]
scalar_t tmp = 0.0;
while (i < num_elems) {
float x = static_cast<float>(input[i]);
tmp = max(tmp, fabs(x));
i += blockDim.x * gridDim.x;
}
cache[threadIdx.x] = tmp;
__syncthreads();
// Now perform parallel reduction within the thread block
int ib = blockDim.x / 2;
while (ib != 0) {
if (threadIdx.x < ib && cache[threadIdx.x + ib] > cache[threadIdx.x]) {
cache[threadIdx.x] = cache[threadIdx.x + ib];
}
__syncthreads();
ib /= 2;
}
// Finally, since cache[0] contains the maximum for this thread block,
// atomically write the max to the target location
if (threadIdx.x == 0) {
atomicMaxFloat(scale, cache[0] / std::numeric_limits<c10::Float8_e4m3fn>::max());
}
}
template<typename scalar_t>
__global__ void scaled_fp8_quant_kernel(
c10::Float8_e4m3fn* __restrict__ out,
const scalar_t* __restrict__ input,
const float* __restrict__ scale,
int64_t num_elems) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
while (i < num_elems) {
out[i] = static_cast<c10::Float8_e4m3fn>(input[i] / *scale);
i += blockDim.x * gridDim.x;
}
}
} // namespace vllm
void static_scaled_fp8_quant(
torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"scaled_fp8_quant_kernel",
[&] {
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<c10::Float8_e4m3fn>(),
input.data_ptr<scalar_t>(),
scale.data_ptr<float>(),
num_elems);
});
}
void dynamic_scaled_fp8_quant(
[Kernel] FP8 support for MoE kernel / Mixtral (#4244) This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208 It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` **Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows: <img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03"> **Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows: ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7018|± |0.0036| | - humanities |N/A |none | 5|acc |0.6472|± |0.0065| | - other |N/A |none | 5|acc |0.7673|± |0.0072| | - social_sciences|N/A |none | 5|acc |0.8099|± |0.0070| | - stem |N/A |none | 5|acc |0.6131|± |0.0083| ``` this compares favorably with the fp16 results which are ``` | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7020|± |0.1313| | - humanities |N/A |none | 5|acc |0.6425|± |0.1349| | - other |N/A |none | 5|acc |0.7744|± |0.1038| | - social_sciences|N/A |none | 5|acc |0.8131|± |0.0695| | - stem |N/A |none | 5|acc |0.6108|± |0.1383| ``` Happy hacking!
2024-04-23 18:18:23 -07:00
torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., d]
torch::Tensor& scale) // [1]
{
int64_t num_tokens = input.numel() / input.size(-1);
int64_t num_elems = input.numel();
dim3 grid(num_tokens);
dim3 block(1024);
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"scaled_fp8_quant_kernel",
[&] {
vllm::segmented_max_reduction<scalar_t><<<grid, block, 0, stream>>>(
scale.data_ptr<float>(),
input.data_ptr<scalar_t>(),
num_elems);
vllm::scaled_fp8_quant_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<c10::Float8_e4m3fn>(),
input.data_ptr<scalar_t>(),
scale.data_ptr<float>(),
num_elems);
});
}