vllm/tests/entrypoints/openai/test_guided_processors.py

73 lines
3.0 KiB
Python
Raw Normal View History

# This unit test should be moved to a new
# tests/test_guided_decoding directory.
import pytest
import torch
2024-03-25 23:59:47 +09:00
from transformers import AutoTokenizer
from vllm.entrypoints.openai.protocol import CompletionRequest
from vllm.model_executor.guided_decoding import (
get_guided_decoding_logits_processor)
from vllm.model_executor.guided_decoding.outlines_logits_processors import (
JSONLogitsProcessor, RegexLogitsProcessor)
def test_guided_logits_processors(sample_regex, sample_json_schema):
"""Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor."""
tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta')
regex_LP = RegexLogitsProcessor(sample_regex, tokenizer)
json_LP = JSONLogitsProcessor(sample_json_schema,
tokenizer,
whitespace_pattern=None)
token_ids = tokenizer.encode(
f"Give an example IPv4 address with this regex: {sample_regex}")
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
regex_LP(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
token_ids = tokenizer.encode(
f"Give an employee profile that fits this schema: {sample_json_schema}"
)
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
json_LP(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
@pytest.mark.asyncio
@pytest.mark.parametrize("backend", ["outlines", "lm-format-enforcer"])
async def test_guided_logits_processor_black_box(backend: str, sample_regex,
sample_json_schema):
tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta')
token_ids = tokenizer.encode(
f"Give an example IPv4 address with this regex: {sample_regex}")
regex_request = CompletionRequest(model='test',
prompt=token_ids,
guided_regex=sample_regex)
regex_lp = await get_guided_decoding_logits_processor(
backend, regex_request, tokenizer)
assert regex_lp is not None
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
tensor = regex_lp(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)
token_ids = tokenizer.encode(
f"Give an employee profile that fits this schema: {sample_json_schema}"
)
json_request = CompletionRequest(model='test',
prompt=token_ids,
guided_json=sample_json_schema)
json_lp = await get_guided_decoding_logits_processor(
backend, json_request, tokenizer)
assert json_lp is not None
tensor = torch.rand(32000)
original_tensor = torch.clone(tensor)
tensor = json_lp(token_ids, tensor)
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)