261 lines
10 KiB
Markdown
261 lines
10 KiB
Markdown
![]() |
(structured-outputs)=
|
|||
|
|
|||
|
# Structured Outputs
|
|||
|
|
|||
|
vLLM supports the generation of structured outputs using [outlines](https://github.com/dottxt-ai/outlines) or [lm-format-enforcer](https://github.com/noamgat/lm-format-enforcer) as backends for the guided decoding.
|
|||
|
This document shows you some examples of the different options that are available to generate structured outputs.
|
|||
|
|
|||
|
## Online Inference (OpenAI API)
|
|||
|
|
|||
|
You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API.
|
|||
|
|
|||
|
The following parameters are supported, which must be added as extra parameters:
|
|||
|
|
|||
|
- `guided_choice`: the output will be exactly one of the choices.
|
|||
|
- `guided_regex`: the output will follow the regex pattern.
|
|||
|
- `guided_json`: the output will follow the JSON schema.
|
|||
|
- `guided_grammar`: the output will follow the context free grammar.
|
|||
|
- `guided_whitespace_pattern`: used to override the default whitespace pattern for guided json decoding.
|
|||
|
- `guided_decoding_backend`: used to select the guided decoding backend to use.
|
|||
|
|
|||
|
You can see the complete list of supported parameters on the [OpenAI Compatible Server](../serving/openai_compatible_server.md) page.
|
|||
|
|
|||
|
Now let´s see an example for each of the cases, starting with the `guided_choice`, as it´s the easiest one:
|
|||
|
|
|||
|
```python
|
|||
|
from openai import OpenAI
|
|||
|
client = OpenAI(
|
|||
|
base_url="http://localhost:8000/v1",
|
|||
|
api_key="-",
|
|||
|
)
|
|||
|
|
|||
|
completion = client.chat.completions.create(
|
|||
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|||
|
messages=[
|
|||
|
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
|||
|
],
|
|||
|
extra_body={"guided_choice": ["positive", "negative"]},
|
|||
|
)
|
|||
|
print(completion.choices[0].message.content)
|
|||
|
```
|
|||
|
|
|||
|
The next example shows how to use the `guided_regex`. The idea is to generate an email address, given a simple regex template:
|
|||
|
|
|||
|
```python
|
|||
|
completion = client.chat.completions.create(
|
|||
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|||
|
messages=[
|
|||
|
{
|
|||
|
"role": "user",
|
|||
|
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
|
|||
|
}
|
|||
|
],
|
|||
|
extra_body={"guided_regex": "\w+@\w+\.com\n", "stop": ["\n"]},
|
|||
|
)
|
|||
|
print(completion.choices[0].message.content)
|
|||
|
```
|
|||
|
|
|||
|
One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats.
|
|||
|
For this we can use the `guided_json` parameter in two different ways:
|
|||
|
|
|||
|
- Using directly a [JSON Schema](https://json-schema.org/)
|
|||
|
- Defining a [Pydantic model](https://docs.pydantic.dev/latest/) and then extracting the JSON Schema from it (which is normally an easier option).
|
|||
|
|
|||
|
The next example shows how to use the `guided_json` parameter with a Pydantic model:
|
|||
|
|
|||
|
```python
|
|||
|
from pydantic import BaseModel
|
|||
|
from enum import Enum
|
|||
|
|
|||
|
class CarType(str, Enum):
|
|||
|
sedan = "sedan"
|
|||
|
suv = "SUV"
|
|||
|
truck = "Truck"
|
|||
|
coupe = "Coupe"
|
|||
|
|
|||
|
|
|||
|
class CarDescription(BaseModel):
|
|||
|
brand: str
|
|||
|
model: str
|
|||
|
car_type: CarType
|
|||
|
|
|||
|
|
|||
|
json_schema = CarDescription.model_json_schema()
|
|||
|
|
|||
|
completion = client.chat.completions.create(
|
|||
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|||
|
messages=[
|
|||
|
{
|
|||
|
"role": "user",
|
|||
|
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
|
|||
|
}
|
|||
|
],
|
|||
|
extra_body={"guided_json": json_schema},
|
|||
|
)
|
|||
|
print(completion.choices[0].message.content)
|
|||
|
```
|
|||
|
|
|||
|
```{tip}
|
|||
|
While not strictly necessary, normally it´s better to indicate in the prompt that a JSON needs to be generated and which fields and how should the LLM fill them.
|
|||
|
This can improve the results notably in most cases.
|
|||
|
```
|
|||
|
|
|||
|
Finally we have the `guided_grammar`, which probably is the most difficult one to use but it´s really powerful, as it allows us to define complete languages like SQL queries.
|
|||
|
It works by using a context free EBNF grammar, which for example we can use to define a specific format of simplified SQL queries, like in the example below:
|
|||
|
|
|||
|
```python
|
|||
|
simplified_sql_grammar = """
|
|||
|
?start: select_statement
|
|||
|
|
|||
|
?select_statement: "SELECT " column_list " FROM " table_name
|
|||
|
|
|||
|
?column_list: column_name ("," column_name)*
|
|||
|
|
|||
|
?table_name: identifier
|
|||
|
|
|||
|
?column_name: identifier
|
|||
|
|
|||
|
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
|||
|
"""
|
|||
|
|
|||
|
completion = client.chat.completions.create(
|
|||
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|||
|
messages=[
|
|||
|
{
|
|||
|
"role": "user",
|
|||
|
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
|
|||
|
}
|
|||
|
],
|
|||
|
extra_body={"guided_grammar": simplified_sql_grammar},
|
|||
|
)
|
|||
|
print(completion.choices[0].message.content)
|
|||
|
```
|
|||
|
|
|||
|
The complete code of the examples can be found on [examples/openai_chat_completion_structured_outputs.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_structured_outputs.py).
|
|||
|
|
|||
|
## Experimental Automatic Parsing (OpenAI API)
|
|||
|
|
|||
|
This section covers the OpenAI beta wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types.
|
|||
|
|
|||
|
At the time of writing (`openai==1.54.4`), this is a "beta" feature in the OpenAI client library. Code reference can be found [here](https://github.com/openai/openai-python/blob/52357cff50bee57ef442e94d78a0de38b4173fc2/src/openai/resources/beta/chat/completions.py#L100-L104).
|
|||
|
|
|||
|
For the following examples, vLLM was setup using `vllm serve meta-llama/Llama-3.1-8B-Instruct`
|
|||
|
|
|||
|
Here is a simple example demonstrating how to get structured output using Pydantic models:
|
|||
|
|
|||
|
```python
|
|||
|
from pydantic import BaseModel
|
|||
|
from openai import OpenAI
|
|||
|
|
|||
|
|
|||
|
class Info(BaseModel):
|
|||
|
name: str
|
|||
|
age: int
|
|||
|
|
|||
|
|
|||
|
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
|
|||
|
completion = client.beta.chat.completions.parse(
|
|||
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|||
|
messages=[
|
|||
|
{"role": "system", "content": "You are a helpful assistant."},
|
|||
|
{"role": "user", "content": "My name is Cameron, I'm 28. What's my name and age?"},
|
|||
|
],
|
|||
|
response_format=Info,
|
|||
|
extra_body=dict(guided_decoding_backend="outlines"),
|
|||
|
)
|
|||
|
|
|||
|
message = completion.choices[0].message
|
|||
|
print(message)
|
|||
|
assert message.parsed
|
|||
|
print("Name:", message.parsed.name)
|
|||
|
print("Age:", message.parsed.age)
|
|||
|
```
|
|||
|
|
|||
|
Output:
|
|||
|
|
|||
|
```console
|
|||
|
ParsedChatCompletionMessage[Testing](content='{"name": "Cameron", "age": 28}', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=Testing(name='Cameron', age=28))
|
|||
|
Name: Cameron
|
|||
|
Age: 28
|
|||
|
```
|
|||
|
|
|||
|
Here is a more complex example using nested Pydantic models to handle a step-by-step math solution:
|
|||
|
|
|||
|
```python
|
|||
|
from typing import List
|
|||
|
from pydantic import BaseModel
|
|||
|
from openai import OpenAI
|
|||
|
|
|||
|
|
|||
|
class Step(BaseModel):
|
|||
|
explanation: str
|
|||
|
output: str
|
|||
|
|
|||
|
|
|||
|
class MathResponse(BaseModel):
|
|||
|
steps: List[Step]
|
|||
|
final_answer: str
|
|||
|
|
|||
|
|
|||
|
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy")
|
|||
|
completion = client.beta.chat.completions.parse(
|
|||
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|||
|
messages=[
|
|||
|
{"role": "system", "content": "You are a helpful expert math tutor."},
|
|||
|
{"role": "user", "content": "Solve 8x + 31 = 2."},
|
|||
|
],
|
|||
|
response_format=MathResponse,
|
|||
|
extra_body=dict(guided_decoding_backend="outlines"),
|
|||
|
)
|
|||
|
|
|||
|
message = completion.choices[0].message
|
|||
|
print(message)
|
|||
|
assert message.parsed
|
|||
|
for i, step in enumerate(message.parsed.steps):
|
|||
|
print(f"Step #{i}:", step)
|
|||
|
print("Answer:", message.parsed.final_answer)
|
|||
|
```
|
|||
|
|
|||
|
Output:
|
|||
|
|
|||
|
```console
|
|||
|
ParsedChatCompletionMessage[MathResponse](content='{ "steps": [{ "explanation": "First, let\'s isolate the term with the variable \'x\'. To do this, we\'ll subtract 31 from both sides of the equation.", "output": "8x + 31 - 31 = 2 - 31"}, { "explanation": "By subtracting 31 from both sides, we simplify the equation to 8x = -29.", "output": "8x = -29"}, { "explanation": "Next, let\'s isolate \'x\' by dividing both sides of the equation by 8.", "output": "8x / 8 = -29 / 8"}], "final_answer": "x = -29/8" }', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=MathResponse(steps=[Step(explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation.", output='8x + 31 - 31 = 2 - 31'), Step(explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.', output='8x = -29'), Step(explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8.", output='8x / 8 = -29 / 8')], final_answer='x = -29/8'))
|
|||
|
Step #0: explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation." output='8x + 31 - 31 = 2 - 31'
|
|||
|
Step #1: explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.' output='8x = -29'
|
|||
|
Step #2: explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8." output='8x / 8 = -29 / 8'
|
|||
|
Answer: x = -29/8
|
|||
|
```
|
|||
|
|
|||
|
## Offline Inference
|
|||
|
|
|||
|
Offline inference allows for the same types of guided decoding.
|
|||
|
To use it, we´ll need to configure the guided decoding using the class `GuidedDecodingParams` inside `SamplingParams`.
|
|||
|
The main available options inside `GuidedDecodingParams` are:
|
|||
|
|
|||
|
- `json`
|
|||
|
- `regex`
|
|||
|
- `choice`
|
|||
|
- `grammar`
|
|||
|
- `backend`
|
|||
|
- `whitespace_pattern`
|
|||
|
|
|||
|
These parameters can be used in the same way as the parameters from the Online Inference examples above.
|
|||
|
One example for the usage of the `choices` parameter is shown below:
|
|||
|
|
|||
|
```python
|
|||
|
from vllm import LLM, SamplingParams
|
|||
|
from vllm.sampling_params import GuidedDecodingParams
|
|||
|
|
|||
|
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
|
|||
|
|
|||
|
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
|
|||
|
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
|||
|
outputs = llm.generate(
|
|||
|
prompts="Classify this sentiment: vLLM is wonderful!",
|
|||
|
sampling_params=sampling_params,
|
|||
|
)
|
|||
|
print(outputs[0].outputs[0].text)
|
|||
|
```
|
|||
|
|
|||
|
A complete example with all options can be found in [examples/offline_inference_structured_outputs.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_structured_outputs.py).
|