vllm/tests/kernels/test_flash_attn.py

209 lines
7.2 KiB
Python
Raw Normal View History

2024-05-19 18:11:30 -07:00
from typing import List, Optional, Tuple
import pytest
import torch
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
NUM_HEADS = [(16, 16), (32, 8), (64, 8)]
HEAD_SIZES = [128, 256]
BLOCK_SIZES = [16, 32]
DTYPES = [torch.float16, torch.bfloat16]
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.
def ref_paged_attn(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
query_lens: List[int],
kv_lens: List[int],
block_tables: torch.Tensor,
scale: float,
sliding_window: Optional[int] = None,
) -> torch.Tensor:
num_seqs = len(query_lens)
block_tables = block_tables.cpu().numpy()
_, block_size, num_kv_heads, head_size = key_cache.shape
outputs = []
start_idx = 0
for i in range(num_seqs):
query_len = query_lens[i]
kv_len = kv_lens[i]
q = query[start_idx:start_idx + query_len]
q *= scale
num_kv_blocks = (kv_len + block_size - 1) // block_size
block_indices = block_tables[i, :num_kv_blocks]
k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
k = k[:kv_len]
v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
v = v[:kv_len]
if q.shape[1] != k.shape[1]:
k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
attn = torch.einsum("qhd,khd->hqk", q, k).float()
empty_mask = torch.ones(query_len, kv_len)
mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
if sliding_window is not None:
sliding_window_mask = torch.triu(empty_mask,
diagonal=kv_len -
(query_len + sliding_window) +
1).bool().logical_not()
mask |= sliding_window_mask
attn.masked_fill_(mask, float("-inf"))
attn = torch.softmax(attn, dim=-1).to(v.dtype)
out = torch.einsum("hqk,khd->qhd", attn, v)
outputs.append(out)
start_idx += query_len
return torch.cat(outputs, dim=0)
@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode
def test_flash_attn_with_paged_kv(
kv_lens: List[Tuple[int, int]],
num_heads: Tuple[int, int],
head_size: int,
dtype: torch.dtype,
block_size: int,
) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
max_kv_len = max(kv_lens)
scale = head_size**-0.5
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
key_cache = torch.randn(NUM_BLOCKS,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
output = flash_attn_with_kvcache(
q=query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
softmax_scale=scale,
causal=True,
block_table=block_tables,
cache_seqlens=kv_lens_tensor,
).squeeze(1)
ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
value_cache=value_cache,
query_lens=[1] * num_seqs,
kv_lens=kv_lens,
block_tables=block_tables,
scale=scale,
)
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - ref_output))}"
@pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("sliding_window", [None])
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode
def test_varlen_with_paged_kv(
seq_lens: List[Tuple[int, int]],
num_heads: Tuple[int, int],
head_size: int,
sliding_window: Optional[int],
dtype: torch.dtype,
block_size: int,
) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
max_query_len = max(query_lens)
max_kv_len = max(kv_lens)
window_size = ((sliding_window,
sliding_window) if sliding_window is not None else
(-1, -1))
scale = head_size**-0.5
query = torch.randn(sum(query_lens),
num_query_heads,
head_size,
dtype=dtype)
key_cache = torch.randn(NUM_BLOCKS,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
# Normalize the scale of the key and value caches to mitigate
# numerical instability.
key_cache /= head_size**0.5
value_cache /= head_size**0.5
cu_query_lens = torch.tensor([0] + query_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)
cu_kv_lens = torch.tensor([0] + kv_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=cu_query_lens,
cu_seqlens_k=cu_kv_lens,
max_seqlen_q=max_query_len,
max_seqlen_k=max_kv_len,
softmax_scale=scale,
causal=True,
window_size=window_size,
block_table=block_tables,
)
ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
value_cache=value_cache,
query_lens=query_lens,
kv_lens=kv_lens,
block_tables=block_tables,
scale=scale,
sliding_window=sliding_window,
)
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - ref_output))}"