vLLM powered by OpenVINO supports all LLM models from :doc:`vLLM supported models list <../models/supported_models>` and can perform optimal model serving on all x86-64 CPUs with, at least, AVX2 support. OpenVINO vLLM backend supports the following advanced vLLM features:
vLLM OpenVINO backend uses the following environment variables to control behavior:
-``VLLM_OPENVINO_KVCACHE_SPACE`` to specify the KV Cache size (e.g, ``VLLM_OPENVINO_KVCACHE_SPACE=40`` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.
-``VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8`` to control KV cache precision. By default, FP16 / BF16 is used depending on platform.
-``VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON`` to enable U8 weights compression during model loading stage. By default, compression is turned off. You can also export model with different compression techniques using `optimum-cli` and pass exported folder as `<model_id>`
To enable better TPOT / TTFT latency, you can use vLLM's chunked prefill feature (``--enable-chunked-prefill``). Based on the experiments, the recommended batch size is ``256`` (``--max-num-batched-tokens``)