vllm/cacheflow/sampling_params.py

77 lines
2.7 KiB
Python
Raw Normal View History

2023-05-10 00:58:31 -07:00
from typing import Dict, Set
2023-02-09 11:27:06 +00:00
2023-02-23 07:38:43 +00:00
class SamplingParams:
2023-02-09 11:27:06 +00:00
def __init__(
self,
n: int,
temperature: float,
top_p: float,
use_beam_search: bool,
stop_token_ids: Set[int],
max_num_steps: int,
num_logprobs: int,
2023-02-09 11:27:06 +00:00
) -> None:
if n < 1:
raise ValueError(f'n must be at least 1, got {n}.')
if temperature < 0.0:
raise ValueError(
f'temperature must be non-negative, got {temperature}.')
if not 0.0 < top_p <= 1.0:
raise ValueError(f'top_p must be in (0, 1], got {top_p}.')
if max_num_steps < 1:
raise ValueError(
f'max_num_steps must be at least 1, got {max_num_steps}.')
if num_logprobs < 0:
raise ValueError(
f'num_logprobs must be non-negative, got {num_logprobs}.')
2023-02-09 11:27:06 +00:00
if use_beam_search:
if n == 1:
raise ValueError(
'n must be greater than 1 when using beam search.')
if temperature > 0.0:
raise ValueError(
'temperature must be 0 when using beam search.')
if top_p < 1.0:
raise ValueError(
'top_p must be 1 when using beam search.')
2023-02-09 11:27:06 +00:00
elif temperature == 0.0:
# Zero temperature means greedy sampling.
if n > 1:
raise ValueError(
'n must be 1 when using greedy sampling.')
if top_p < 1.0:
raise ValueError(
'top_p must be 1 when using greedy sampling.')
2023-02-09 11:27:06 +00:00
self.n = n
self.temperature = temperature
self.top_p = top_p
self.use_beam_search = use_beam_search
self.stop_token_ids = stop_token_ids
2023-02-24 11:44:40 +00:00
self.max_num_steps = max_num_steps
self.num_logprobs = num_logprobs
def __repr__(self) -> str:
return (f'SamplingParams(n={self.n}, '
f'temperature={self.temperature}, '
f'top_p={self.top_p}, '
f'use_beam_search={self.use_beam_search}, '
f'stop_token_ids={self.stop_token_ids}, '
f'max_num_steps={self.max_num_steps}, '
2023-05-10 00:58:31 -07:00
f'num_logprobs={self.num_logprobs}')
2023-03-29 14:48:56 +08:00
@classmethod
def from_dict(cls, d: Dict) -> 'SamplingParams':
return cls(
n=d.get('n', 1),
temperature=d.get('temperature', 1.0),
top_p=d.get('top_p', 1.0),
use_beam_search=d.get('use_beam_search', False),
stop_token_ids=set(d.get('stop_token_ids', set())),
max_num_steps=d.get('max_num_steps', 16),
num_logprobs=d.get('num_logprobs', 0),
)