283 lines
10 KiB
Python
Raw Normal View History

from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
marlin_make_empty_g_idx, marlin_make_workspace, marlin_permute_scales,
replace_tensor, verify_marlin_supported, verify_marlin_supports_shape)
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
class AWQMarlinConfig(QuantizationConfig):
"""Config class for AWQ Marlin"""
# num_bits -> type
TYPE_MAP = {
4: scalar_types.uint4,
8: scalar_types.uint8,
}
def __init__(self, weight_bits: int, group_size: int, has_zp: bool,
lm_head_quantized: bool) -> None:
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.has_zp = has_zp
self.lm_head_quantized = lm_head_quantized
if weight_bits not in self.TYPE_MAP:
raise ValueError(f"Unsupported num_bits = {weight_bits}. "
f"Supported num_bits = {self.TYPE_MAP.keys()}")
self.quant_type = self.TYPE_MAP[weight_bits]
verify_marlin_supported(self.quant_type,
group_size=self.group_size,
has_zp=self.has_zp)
def __repr__(self) -> str:
return (f"AWQMarlinConfig(quant_type={self.quant_type}, "
f"group_size={self.group_size}, "
f"has_zp={self.has_zp}, "
f"lm_head_quantized={self.lm_head_quantized})")
@classmethod
def get_name(cls) -> str:
return "awq_marlin"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "AWQMarlinConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
has_zp = cls.get_from_keys(config, ["zero_point"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
default=False)
return cls(weight_bits, group_size, has_zp, lm_head_quantized)
@classmethod
def override_quantization_method(cls, hf_quant_cfg,
user_quant) -> Optional[str]:
can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
or user_quant == "awq_marlin")
if can_convert and is_valid_user_quant:
msg = ("The model is convertible to {} during runtime."
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
logger.info(msg)
return cls.get_name()
if can_convert and user_quant == "awq":
logger.info("Detected that the model can run with awq_marlin"
", however you specified quantization=awq explicitly,"
" so forcing awq. Use quantization=awq_marlin for"
" faster inference")
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["AWQMarlinLinearMethod"]:
if (isinstance(layer, LinearBase) or
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
return AWQMarlinLinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
@classmethod
def is_awq_marlin_compatible(cls, quant_config: Dict[str, Any]):
# Extract data from quant config.
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits", None)
group_size = quant_config.get("group_size", None)
has_zp = quant_config.get("zero_point", None)
if quant_method != "awq":
return False
# If we cannot find the info needed in the config, cannot convert.
if (num_bits is None or group_size is None or has_zp is None):
return False
if num_bits not in cls.TYPE_MAP:
return False
return check_marlin_supported(quant_type=cls.TYPE_MAP[num_bits],
group_size=group_size,
has_zp=has_zp,
min_capability=cls.get_min_capability())
class AWQMarlinLinearMethod(LinearMethodBase):
"""Linear method for AWQ Marlin.
Args:
quant_config: The AWQ Marlin quantization config.
"""
def __init__(self, quant_config: AWQMarlinConfig) -> None:
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
del output_size
output_size_per_partition = sum(output_partition_sizes)
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
verify_marlin_supports_shape(
output_size_per_partition=output_size_per_partition,
input_size_per_partition=input_size_per_partition,
input_size=input_size,
group_size=group_size)
qweight = Parameter(
torch.empty(
input_size_per_partition,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
num_groups = input_size_per_partition // group_size
qzeros = Parameter(
torch.empty(
num_groups,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qzeros, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
scales = Parameter(
torch.empty(
num_groups,
output_size_per_partition,
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(scales, {
"input_dim": 0,
"output_dim": 1,
})
layer.register_parameter("qweight", qweight)
set_weight_attrs(qweight, extra_weight_attrs)
layer.register_parameter("qzeros", qzeros)
set_weight_attrs(qzeros, extra_weight_attrs)
layer.register_parameter("scales", scales)
set_weight_attrs(scales, extra_weight_attrs)
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.num_groups = num_groups
# TODO: Update this docs
# Checkpoints are serialized in AutoAWQ format, which is different from the
# marlin format. This function is called after the weights are loaded.
# Here, we handle the repacking
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
device = layer.qweight.device
# Allocate marlin workspace
layer.workspace = marlin_make_workspace(
layer.output_size_per_partition, device)
# Repack weights from AWQ format to marlin format.
marlin_qweight = ops.awq_marlin_repack(
layer.qweight,
size_k=layer.input_size_per_partition,
size_n=layer.output_size_per_partition,
num_bits=self.quant_config.quant_type.size_bits)
replace_tensor(layer, "qweight", marlin_qweight)
# Permute scales from AWQ format to marlin format.
marlin_scales = marlin_permute_scales(
layer.scales,
size_k=layer.input_size_per_partition,
size_n=layer.output_size_per_partition,
group_size=self.quant_config.group_size)
replace_tensor(layer, "scales", marlin_scales)
# Permute zero-points from AWQ format to marlin format.
marlin_zp = awq_to_marlin_zero_points(
layer.qzeros,
size_k=layer.num_groups,
size_n=layer.output_size_per_partition,
num_bits=self.quant_config.quant_type.size_bits)
replace_tensor(layer, "qzeros", marlin_zp)
# Not-used
layer.g_idx = marlin_make_empty_g_idx(device)
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return apply_awq_marlin_linear(
input=x,
weight=layer.qweight,
weight_scale=layer.scales,
weight_zp=layer.qzeros,
g_idx=layer.g_idx,
g_idx_sort_indices=layer.g_idx_sort_indices,
workspace=layer.workspace,
quant_type=self.quant_config.quant_type,
output_size_per_partition=layer.output_size_per_partition,
input_size_per_partition=layer.input_size_per_partition,
bias=bias)