84 lines
2.7 KiB
Python
84 lines
2.7 KiB
Python
![]() |
import torch
|
||
|
|
||
|
from vllm.multimodal.base import MultiModalInputs, NestedTensors
|
||
|
|
||
|
|
||
|
def assert_nested_tensors_equal(expected: NestedTensors,
|
||
|
actual: NestedTensors):
|
||
|
assert type(expected) == type(actual)
|
||
|
if isinstance(expected, torch.Tensor):
|
||
|
assert torch.equal(expected, actual)
|
||
|
else:
|
||
|
for expected_item, actual_item in zip(expected, actual):
|
||
|
assert_nested_tensors_equal(expected_item, actual_item)
|
||
|
|
||
|
|
||
|
def assert_multimodal_inputs_equal(expected: MultiModalInputs,
|
||
|
actual: MultiModalInputs):
|
||
|
assert set(expected.keys()) == set(actual.keys())
|
||
|
for key in expected:
|
||
|
assert_nested_tensors_equal(expected[key], actual[key])
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_single_tensor():
|
||
|
t = torch.rand([1, 2])
|
||
|
result = MultiModalInputs.batch([{"image": t}])
|
||
|
assert_multimodal_inputs_equal(result, {"image": t.unsqueeze(0)})
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_multiple_tensors():
|
||
|
a = torch.rand([1, 1, 2])
|
||
|
b = torch.rand([1, 1, 2])
|
||
|
c = torch.rand([1, 1, 2])
|
||
|
result = MultiModalInputs.batch([{"image": a}, {"image": b}, {"image": c}])
|
||
|
assert_multimodal_inputs_equal(result, {"image": torch.stack([a, b, c])})
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_multiple_heterogeneous_tensors():
|
||
|
a = torch.rand([1, 2, 2])
|
||
|
b = torch.rand([1, 3, 2])
|
||
|
c = torch.rand([1, 4, 2])
|
||
|
result = MultiModalInputs.batch([{"image": a}, {"image": b}, {"image": c}])
|
||
|
assert_multimodal_inputs_equal(result, {"image": [a, b, c]})
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_nested_tensors():
|
||
|
a = torch.rand([2, 3])
|
||
|
b = torch.rand([2, 3])
|
||
|
c = torch.rand([2, 3])
|
||
|
result = MultiModalInputs.batch([{
|
||
|
"image": [a]
|
||
|
}, {
|
||
|
"image": [b]
|
||
|
}, {
|
||
|
"image": [c]
|
||
|
}])
|
||
|
assert_multimodal_inputs_equal(result, {
|
||
|
"image":
|
||
|
torch.stack([a.unsqueeze(0),
|
||
|
b.unsqueeze(0),
|
||
|
c.unsqueeze(0)])
|
||
|
})
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_heterogeneous_lists():
|
||
|
a = torch.rand([1, 2, 3])
|
||
|
b = torch.rand([1, 2, 3])
|
||
|
c = torch.rand([1, 2, 3])
|
||
|
result = MultiModalInputs.batch([{"image": [a, b]}, {"image": [c]}])
|
||
|
assert_multimodal_inputs_equal(
|
||
|
result,
|
||
|
{"image": [torch.stack([a, b]), c.unsqueeze(0)]})
|
||
|
|
||
|
|
||
|
def test_multimodal_input_batch_multiple_batchable_lists():
|
||
|
a = torch.rand([1, 2, 3])
|
||
|
b = torch.rand([1, 2, 3])
|
||
|
c = torch.rand([1, 2, 3])
|
||
|
d = torch.rand([1, 2, 3])
|
||
|
result = MultiModalInputs.batch([{"image": [a, b]}, {"image": [c, d]}])
|
||
|
assert_multimodal_inputs_equal(
|
||
|
result,
|
||
|
{"image": torch.stack([torch.stack([a, b]),
|
||
|
torch.stack([c, d])])})
|