94 lines
3.3 KiB
Python
Raw Normal View History

from typing import List, Optional, Tuple, Union
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)
from vllm.entrypoints.openai.reasoning_parsers import ReasoningParser
class StreamingReasoningReconstructor:
def __init__(self):
self.reasoning_content = None
self.other_content = None
def append_delta(self, delta: DeltaMessage):
# content and the reasoning content should not be present
# at the same time
assert delta.content is None or delta.reasoning_content is None, (
"Both content and reasoning content are present in the "
"delta message")
if delta.content is not None:
if self.other_content is None:
self.other_content = delta.content
else:
self.other_content += delta.content
else:
if self.reasoning_content is None:
self.reasoning_content = delta.reasoning_content
else:
self.reasoning_content += delta.reasoning_content
def run_reasoning_extraction(
reasoning_parser: ReasoningParser,
model_output: List[str],
request: Union[ChatCompletionRequest, None] = None,
streaming: bool = False,
) -> Tuple[Optional[str], Optional[str]]:
if streaming:
reconstructor = run_reasoning_extraction_streaming(
reasoning_parser,
model_output,
request,
)
return (
reconstructor.reasoning_content,
reconstructor.other_content or None,
)
else:
reasoning, content = run_reasoning_extraction_nonstreaming(
reasoning_parser, model_output, request)
return reasoning, content
def run_reasoning_extraction_nonstreaming(
reasoning_parser: ReasoningParser,
model_output: List[str],
request: Union[ChatCompletionRequest, None] = None,
) -> Tuple[Optional[str], Optional[str]]:
request = request or ChatCompletionRequest(messages=[], model="test-model")
return reasoning_parser.extract_reasoning_content(
model_output=''.join(model_output), request=request)
def run_reasoning_extraction_streaming(
reasoning_parser: ReasoningParser,
model_deltas: List[str],
request: Union[ChatCompletionRequest, None] = None,
) -> StreamingReasoningReconstructor:
request = request or ChatCompletionRequest(messages=[], model="test-model")
reconstructor = StreamingReasoningReconstructor()
previous_text = ""
previous_tokens: List[int] = []
for delta in model_deltas:
token_delta = [
reasoning_parser.vocab.get(token)
for token in reasoning_parser.model_tokenizer.tokenize(delta)
if token in reasoning_parser.vocab
]
current_text = previous_text + delta
current_tokens = previous_tokens + token_delta
delta_message = reasoning_parser.extract_reasoning_content_streaming(
previous_text,
current_text,
delta,
previous_tokens,
current_tokens,
token_delta,
)
if delta_message is not None:
reconstructor.append_delta(delta_message)
previous_text = current_text
previous_tokens = current_tokens
return reconstructor