vllm/docs/source/serving/metrics.md

39 lines
1.6 KiB
Markdown
Raw Normal View History

# Production Metrics
vLLM exposes a number of metrics that can be used to monitor the health of the
system. These metrics are exposed via the `/metrics` endpoint on the vLLM
OpenAI compatible API server.
You can start the server using Python, or using [Docker](#deployment-docker):
```console
vllm serve unsloth/Llama-3.2-1B-Instruct
```
Then query the endpoint to get the latest metrics from the server:
```console
$ curl http://0.0.0.0:8000/metrics
# HELP vllm:iteration_tokens_total Histogram of number of tokens per engine_step.
# TYPE vllm:iteration_tokens_total histogram
vllm:iteration_tokens_total_sum{model_name="unsloth/Llama-3.2-1B-Instruct"} 0.0
vllm:iteration_tokens_total_bucket{le="1.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="8.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="16.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="32.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="64.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="128.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="256.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="512.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
...
```
The following metrics are exposed:
```{literalinclude} ../../../vllm/engine/metrics.py
:end-before: end-metrics-definitions
:language: python
:start-after: begin-metrics-definitions
```