vllm/benchmarks/benchmark_prioritization.py

178 lines
6.0 KiB
Python
Raw Normal View History

"""Benchmark offline prioritization."""
import argparse
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break
# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
#Select a equi-probable random priority
priority = 0 if random.random() < 0.5 else 1
filtered_dataset.append((prompt, prompt_len, output_len, priority))
return filtered_dataset
def run_vllm(
requests: List[Tuple[str, int, int]],
n: int,
engine_args: EngineArgs,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(**dataclasses.asdict(engine_args))
# Add the requests to the engine.
prompts = []
sampling_params = []
priority = []
for prompt, _, output_len, _priority in requests:
prompts.append(prompt)
priority.append(_priority)
sampling_params.append(
SamplingParams(
n=n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=output_len,
))
start = time.perf_counter()
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True)
end = time.perf_counter()
return end - start
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)
if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.n,
EngineArgs.from_cli_args(args))
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
for _, prompt_len, output_len, priority in requests)
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
# Output JSON results if specified
if args.output_json:
results = {
"elapsed_time": elapsed_time,
"num_requests": len(requests),
"total_num_tokens": total_num_tokens,
"requests_per_second": len(requests) / elapsed_time,
"tokens_per_second": total_num_tokens / elapsed_time,
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=200,
help="Number of prompts to process.")
parser.add_argument(
'--output-json',
type=str,
default=None,
help='Path to save the throughput results in JSON format.')
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None
main(args)