vllm/tests/kernels/quant_utils.py

90 lines
3.4 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
from typing import Optional, Union
import torch
from vllm.platforms import current_platform
# Using the default value (240.0) from pytorch will cause accuracy
# issue on dynamic quantization models. Here use 224.0 for rocm.
ROCM_FP8_MAX = 224.0
FP8_DTYPE = current_platform.fp8_dtype()
def as_float32_tensor(x: Union[float, torch.tensor]) -> torch.tensor:
return torch.as_tensor(x, dtype=torch.float32, device='cuda')
def ref_dynamic_per_token_quant(x: torch.tensor,
quant_dtype: torch.dtype,
scale_ub: Optional[torch.tensor] = None) \
-> tuple[torch.tensor, torch.tensor]:
assert quant_dtype in [torch.int8, FP8_DTYPE]
if scale_ub is not None:
assert quant_dtype == FP8_DTYPE
qtype_traits = torch.iinfo(quant_dtype) if quant_dtype == torch.int8 \
else torch.finfo(quant_dtype)
qtype_traits_max = ROCM_FP8_MAX if current_platform.is_rocm() \
else qtype_traits.max
qtype_traits_min = -ROCM_FP8_MAX if current_platform.is_rocm() \
else qtype_traits.min
qtype_max = as_float32_tensor(qtype_traits_max)
s_1 = as_float32_tensor(1.0)
s_512 = as_float32_tensor(512.0)
# For fp8, in order to match the cuda kernel output, we have to do exactly
# the same operations as in the corresponding fp8 kernel to prevent
# rounding errors.
# Compute scales
x_token_max, _ = x.abs().max(dim=-1)
x_token_max = as_float32_tensor(x_token_max)
if scale_ub is not None:
x_token_max = x_token_max.clamp(max=scale_ub)
scales = (x_token_max / qtype_max)[:, None]
# Quant
if quant_dtype == torch.int8:
iscales = as_float32_tensor(s_1 / scales)
torch_out = as_float32_tensor(x) * iscales
torch_out = torch_out.round()
torch_out = torch_out.clamp(qtype_traits_min,
qtype_traits_max).to(quant_dtype)
else:
assert quant_dtype == FP8_DTYPE
min_scaling_factor = s_1 / (qtype_max * s_512)
scales = scales.clamp(min=min_scaling_factor)
torch_out = as_float32_tensor(x) / scales
torch_out = torch_out.clamp(qtype_traits_min,
qtype_traits_max).to(quant_dtype)
return torch_out, scales
# The int8 version is very similar. Incorporate the int8 version, like in
# ref_dynamic_per_token_quant, when we have a dynamic_per_tensor int8 quant
# kernel
def ref_dynamic_per_tensor_fp8_quant(x: torch.tensor) \
-> tuple[torch.tensor, torch.tensor]:
fp8_traits = torch.finfo(FP8_DTYPE)
fp8_traits_max = ROCM_FP8_MAX if current_platform.is_rocm() \
else fp8_traits.max
fp8_traits_min = -ROCM_FP8_MAX if current_platform.is_rocm() \
else fp8_traits.min
fp8_max = as_float32_tensor(fp8_traits_max)
one = as_float32_tensor(1.0)
# For fp8, in order to match the cuda kernel output, we have to do exactly
# the same operations as in the corresponding fp8 kernel to prevent
# rounding errors.
x_max = as_float32_tensor(x.abs().max())
ref_scale = x_max / fp8_max
ref_iscale = one / ref_scale
ref_out = (as_float32_tensor(x) * ref_iscale).clamp(
fp8_traits_min, fp8_traits_max).to(FP8_DTYPE)
return ref_out, ref_scale.view((1, ))