vllm/tests/entrypoints/openai/test_tokenization.py

129 lines
4.0 KiB
Python
Raw Normal View History

import openai # use the official client for correctness check
import pytest
import requests
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@pytest.fixture(scope="module")
def server():
with RemoteOpenAIServer([
"--model",
MODEL_NAME,
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
"--max-num-seqs",
"128",
]) as remote_server:
yield remote_server
@pytest.fixture(scope="module")
def client(server):
return server.get_async_client()
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_tokenize_completions(client: openai.AsyncOpenAI,
model_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
for add_special in [False, True]:
prompt = "This is a test prompt."
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
response = requests.post(base_url + "/tokenize",
json={
"add_special_tokens": add_special,
"model": model_name,
"prompt": prompt
})
response.raise_for_status()
assert response.json() == {
"tokens": tokens,
"count": len(tokens),
"max_model_len": 8192
}
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_tokenize_chat(client: openai.AsyncOpenAI, model_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
for add_generation in [False, True]:
for add_special in [False, True]:
conversation = [{
"role": "user",
"content": "Hi there!"
}, {
"role": "assistant",
"content": "Nice to meet you!"
}, {
"role": "user",
"content": "Can I ask a question?"
}]
prompt = tokenizer.apply_chat_template(
add_generation_prompt=add_generation,
conversation=conversation,
tokenize=False)
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
response = requests.post(base_url + "/tokenize",
json={
"add_generation_prompt":
add_generation,
"add_special_tokens": add_special,
"messages": conversation,
"model": model_name
})
response.raise_for_status()
assert response.json() == {
"tokens": tokens,
"count": len(tokens),
"max_model_len": 8192
}
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_detokenize(client: openai.AsyncOpenAI, model_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = "This is a test prompt."
tokens = tokenizer.encode(prompt, add_special_tokens=False)
response = requests.post(base_url + "/detokenize",
json={
"model": model_name,
"tokens": tokens
})
response.raise_for_status()
assert response.json() == {"prompt": prompt}