1106 lines
48 KiB
Python
Raw Normal View History

from abc import abstractmethod
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter, UninitializedParameter
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
2024-03-25 23:59:47 +09:00
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.parameter import (BasevLLMParameter,
PackedColumnParameter,
PackedvLLMParameter,
PerTensorScaleParameter,
RowvLLMParameter)
from vllm.model_executor.utils import set_weight_attrs
logger = init_logger(__name__)
WEIGHT_LOADER_V2_SUPPORTED = [
"CompressedTensorsLinearMethod", "AWQMarlinLinearMethod",
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod",
"ModelOptFp8LinearMethod", "IPEXAWQLinearMethod", "IPEXGPTQLinearMethod",
"HQQMarlinMethod"
]
def adjust_marlin_shard(param, shard_size, shard_offset):
marlin_tile_size = getattr(param, "marlin_tile_size", None)
if marlin_tile_size is None:
return shard_size, shard_offset
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
def adjust_bitsandbytes_4bit_shard(param: Parameter,
qkv_offsets: Dict[str, Tuple[int, int]],
loaded_shard_id: str) -> Tuple[int, int]:
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
total, _ = qkv_offsets["total"]
orig_offset, orig_size = qkv_offsets[loaded_shard_id]
quantized_total = param.data.shape[0]
quantized_offset = orig_offset * quantized_total // total
quantized_size = orig_size * quantized_total // total
return quantized_size, quantized_offset
def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
"""For fused modules (QKV and MLP) we have an array of length
N that holds 1 scale for each "logical" matrix. So the param
is an array of length N. The loaded_weight corresponds to
one of the shards on disk. Here, we slice the param based on
the shard_id for loading.
"""
qkv_idxs = {"q": 0, "k": 1, "v": 2}
if isinstance(shard_id, str):
shard_id = qkv_idxs[shard_id]
elif not isinstance(shard_id, int):
raise ValueError(f"Unknown Shard Id {shard_id}")
# AutoFP8 scales do not have a shape
# compressed-tensors scales do have a shape
if len(loaded_weight.shape) != 0:
assert loaded_weight.shape[0] == 1
loaded_weight = loaded_weight[0]
return param[shard_id], loaded_weight
class LinearMethodBase(QuantizeMethodBase):
"""Base class for different (maybe quantized) linear methods."""
@abstractmethod
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
"""Create weights for a linear layer.
The weights will be set as attributes of the layer.
Args:
layer: The layer that is using the LinearMethodBase factory.
input_size_per_partition: Size of the weight input dim on rank X.
output_partition_sizes: Sizes of the output dim of each logical
weight on rank X. E.g., output_partition_sizes for QKVLinear
is a list contains the width of Wq, Wk, Wv on rank X.
input_size: Size of the input dim of the weight across all ranks.
output_size: Size of the output dim of the weight across all ranks.
params_dtype: Datatype of the parameters.
"""
raise NotImplementedError
@abstractmethod
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Apply the weights in layer to the input tensor.
Expects create_weights to have been called before on the layer."""
raise NotImplementedError
class UnquantizedLinearMethod(LinearMethodBase):
"""Linear method without quantization."""
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
weight = Parameter(torch.empty(sum(output_partition_sizes),
2023-12-15 19:04:22 +08:00
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
layer.register_parameter("weight", weight)
set_weight_attrs(weight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
return F.linear(x, layer.weight, bias)
class LinearBase(torch.nn.Module):
"""Base linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(
self,
input_size: int,
output_size: int,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-07-20 12:36:57 -04:00
prefix: str = "",
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
if quant_config is None:
self.quant_method: Optional[
QuantizeMethodBase] = UnquantizedLinearMethod()
else:
2024-07-20 12:36:57 -04:00
self.quant_method = quant_config.get_quant_method(self,
prefix=prefix)
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
class ReplicatedLinear(LinearBase):
"""Replicated linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
prefix: The name of the layer in the state dict, including all parents
(e.g. model.layers.0.qkv_proj)
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-07-20 12:36:57 -04:00
prefix: str = ""):
super().__init__(input_size,
output_size,
skip_bias_add,
params_dtype,
quant_config,
prefix=prefix)
# All the linear layer supports quant method.
assert self.quant_method is not None
self.quant_method.create_weights(self,
self.input_size, [self.output_size],
self.input_size,
self.output_size,
self.params_dtype,
weight_loader=self.weight_loader)
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=self.params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
# If the weight on disk does not have a shape, give it one
# (such scales for AutoFp8).
if len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
bias = self.bias if not self.skip_bias_add else None
assert self.quant_method is not None
output = self.quant_method.apply(self, x, bias)
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
def extra_repr(self) -> str:
s = f"in_features={self.input_size}"
s += f", output_features={self.output_size}"
s += f", bias={self.bias is not None}"
return s
class ColumnParallelLinear(LinearBase):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Args:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
output_sizes: list of output sizes packed into one output, like for QKV
the list would be size 3.
prefix: The name of the layer in the state dict, including all parents
(e.g. model.layers.0.qkv_proj)
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
output_sizes: Optional[List[int]] = None,
2024-07-20 12:36:57 -04:00
prefix: str = ""):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
2024-07-20 12:36:57 -04:00
quant_config, prefix)
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
assert self.quant_method is not None
self.output_size_per_partition = divide(self.output_size, tp_size)
self.output_partition_sizes = [self.output_size_per_partition]
# If QKV or MergedColumn, use output size of each partition.
if hasattr(self, "output_sizes"):
self.output_partition_sizes = [
divide(output_size, tp_size)
for output_size in self.output_sizes
]
if output_sizes is None:
output_sizes = [output_size]
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size,
output_partition_sizes=self.output_partition_sizes,
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=(
self.weight_loader_v2 if self.quant_method.__class__.__name__
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
output_dim = getattr(param, "output_dim", None)
# Special case for GGUF
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type:
param.weight_type = loaded_weight.item()
# Materialize GGUF UninitializedParameter
if is_gguf_weight and isinstance(param, UninitializedParameter):
param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
param_data = param.data
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if output_dim is not None and not use_bitsandbytes_4bit:
shard_size = param_data.shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for loading scales off disk, which often do not
# have a shape (such as in the case of AutoFP8).
if len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor):
# Special case for loading scales off disk, which often do not
# have a shape (such as in the case of AutoFP8).
if len(loaded_weight.shape) == 0:
assert loaded_weight.numel() == 1
loaded_weight = loaded_weight.reshape(1)
param.load_column_parallel_weight(loaded_weight=loaded_weight)
def forward(self, input_):
bias = self.bias if not self.skip_bias_add else None
# Matrix multiply.
assert self.quant_method is not None
output_parallel = self.quant_method.apply(self, input_, bias)
if self.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
def extra_repr(self) -> str:
s = f"in_features={self.input_size}"
s += f", output_features={self.output_size_per_partition}"
s += f", bias={self.bias is not None}"
s += f", tp_size={get_tensor_model_parallel_world_size()}"
s += f", gather_output={self.gather_output}"
return s
class MergedColumnParallelLinear(ColumnParallelLinear):
"""Packed linear layers with column parallelism.
Similar to ColumnParallelLinear, but the weight matrix is concatenated
along the output dimension. When the weight matrix is loaded, the
different partitions are sharded separately.
Args:
input_size: input dimension of the linear layer.
output_sizes: list of output dimensions of the linear layer.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make the output
available to all GPUs, otherwise, every GPU will have
its own output.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
prefix: The name of the layer in the state dict, including all parents
(e.g. model.layers.0.qkv_proj)
"""
def __init__(self,
input_size: int,
output_sizes: List[int],
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-07-20 12:36:57 -04:00
prefix: str = ""):
self.output_sizes = output_sizes
tp_size = get_tensor_model_parallel_world_size()
assert all(output_size % tp_size == 0 for output_size in output_sizes)
super().__init__(input_size=input_size,
output_size=sum(output_sizes),
bias=bias,
gather_output=gather_output,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config,
prefix=prefix)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[int] = None):
# Special case for GGUF
# initialize GGUF param after we know the quantize type
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type:
param.data[loaded_shard_id].copy_(loaded_weight)
param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
return
if is_gguf_weight:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
output_dim = getattr(param, "output_dim", None)
shard_size = loaded_weight.size(output_dim) // tp_size
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
param.shard_id.append(loaded_shard_id)
param.shard_id_map[loaded_shard_id] = len(param.data_container)
param.data_container.append(loaded_weight)
if len(param.data_container) == 2:
self.qweight = param.materialize_nested()
return
param_data = param.data
output_dim = getattr(param, "output_dim", None)
# Special case for AQLM codebooks.
is_metadata = getattr(param, "is_metadata", False)
# Special case for per-tensor scale to load scalar into fused array.
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
if loaded_shard_id is None:
# Loaded weight is already fused on disk (mlp).
# (e.g., Phi-3's gate_up_proj).
if output_dim is None:
if needs_scalar_to_array:
param_data, loaded_weight = adjust_scalar_to_fused_array(
param_data, loaded_weight, 0)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
current_shard_offset = 0
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
False)
shard_offsets: List[Tuple[int, int, int]] = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
if use_bitsandbytes_4bit:
shard_size = loaded_weight.shape[output_dim] // 2
shard_offset = shard_size * shard_id
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
assert loaded_shard_id < len(self.output_sizes)
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
if output_dim is not None:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
# Special case for quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
False)
if use_bitsandbytes_4bit:
shard_size = loaded_weight.shape[output_dim]
shard_offset = loaded_weight.shape[output_dim] * \
loaded_shard_id
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
start_idx = tp_rank * shard_size
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if not use_bitsandbytes_4bit:
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
shard_size = loaded_weight.shape[0]
shard_offset = loaded_shard_id * shard_size
param_data = param_data.narrow(0, shard_offset, shard_size)
# Special case for per-tensor scales in fused case.
elif needs_scalar_to_array:
param_data, loaded_weight = adjust_scalar_to_fused_array(
param_data, loaded_weight, loaded_shard_id)
else:
2023-12-15 19:04:22 +08:00
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
loaded_weight: torch.Tensor):
"""
Handle special case for models where MLP layers are already
fused on disk. In this case, we have no shard id. This function
determmines the shard id by splitting these layers and then calls
the weight loader using the shard id.
An example of a model with these fused layers:
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
"""
current_shard_offset = 0
shard_offsets: List[Tuple[int, int, int]] = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
)) and param.packed_dim == param.output_dim:
shard_size, shard_offset = \
param.adjust_shard_indexes_for_packing(
shard_size=shard_size, shard_offset=shard_offset)
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
shard_offset,
shard_size)
self.weight_loader_v2(param, loaded_weight_shard, shard_id)
def weight_loader_v2(self,
param: BasevLLMParameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[int] = None):
if loaded_shard_id is None:
if isinstance(param, PerTensorScaleParameter):
param.load_merged_column_weight(loaded_weight=loaded_weight,
shard_id=0)
return
elif type(param) in (RowvLLMParameter, BasevLLMParameter):
param.load_merged_column_weight(loaded_weight=loaded_weight)
return
# TODO: @dsikka - move to parameter.py
self._load_fused_module_from_checkpoint(param, loaded_weight)
return
assert loaded_shard_id < len(self.output_sizes)
tp_size = get_tensor_model_parallel_world_size()
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
param.load_merged_column_weight(loaded_weight=loaded_weight,
shard_id=loaded_shard_id,
shard_offset=shard_offset,
shard_size=shard_size)
class QKVParallelLinear(ColumnParallelLinear):
"""Linear layers for the attention's QKV transformation.
Linear layers for the linear transformation of the query, key, and value
vectors in the attention layer. The weight matrix is concatenated along
the output dimension. The layer is parallelized along the head dimension.
When the number of key/value heads is smaller than the number of query
heads (e.g., multi-query/grouped-query attention), the key/value head may
be replicated while the query heads are partitioned.
Args:
hidden_size: input hidden state size of the transformer.
head_size: size of each attention head.
total_num_heads: total number of attention query heads.
total_num_kv_heads: total number of attention key/value heads. If
None, assume total_num_kv_heads = total_num_heads.
bias: If true, add bias.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
prefix: The name of the layer in the state dict, including all parents
(e.g. model.layers.0.qkv_proj)
"""
def __init__(self,
hidden_size: int,
head_size: int,
total_num_heads: int,
total_num_kv_heads: Optional[int] = None,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-07-20 12:36:57 -04:00
prefix: str = ""):
self.hidden_size = hidden_size
self.head_size = head_size
self.total_num_heads = total_num_heads
if total_num_kv_heads is None:
total_num_kv_heads = total_num_heads
self.total_num_kv_heads = total_num_kv_heads
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
self.num_heads = divide(self.total_num_heads, tp_size)
if tp_size >= self.total_num_kv_heads:
self.num_kv_heads = 1
self.num_kv_head_replicas = divide(tp_size,
self.total_num_kv_heads)
else:
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
self.num_kv_head_replicas = 1
input_size = self.hidden_size
output_size = (self.num_heads +
2 * self.num_kv_heads) * tp_size * self.head_size
self.output_sizes = [
self.num_heads * self.head_size * tp_size, # q_proj
self.num_kv_heads * self.head_size * tp_size, # k_proj
self.num_kv_heads * self.head_size * tp_size, # v_proj
]
super().__init__(input_size=input_size,
output_size=output_size,
bias=bias,
gather_output=False,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config,
prefix=prefix)
def _get_shard_offset_mapping(self, loaded_shard_id: str):
shard_offset_mapping = {
"q": 0,
"k": self.num_heads * self.head_size,
"v": (self.num_heads + self.num_kv_heads) * self.head_size,
"total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size
}
return shard_offset_mapping.get(loaded_shard_id)
def _get_shard_size_mapping(self, loaded_shard_id: str):
shard_size_mapping = {
"q": self.num_heads * self.head_size,
"k": self.num_kv_heads * self.head_size,
"v": self.num_kv_heads * self.head_size,
}
return shard_size_mapping.get(loaded_shard_id)
def _load_fused_module_from_checkpoint(self, param: BasevLLMParameter,
loaded_weight: torch.Tensor):
"""
Handle special case for models where QKV layers are already
fused on disk. In this case, we have no shard id. This function
determmines the shard id by splitting these layers and then calls
the weight loader using the shard id.
An example of a model with these fused layers:
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
"""
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("q", 0, self.total_num_heads * self.head_size),
("k", self.total_num_heads * self.head_size,
self.total_num_kv_heads * self.head_size),
("v",
(self.total_num_heads + self.total_num_kv_heads) * self.head_size,
self.total_num_kv_heads * self.head_size),
]
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if isinstance(param, (PackedColumnParameter, PackedvLLMParameter
)) and param.packed_dim == param.output_dim:
shard_size, shard_offset = \
param.adjust_shard_indexes_for_packing(
shard_size=shard_size, shard_offset=shard_offset)
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
shard_offset,
shard_size)
self.weight_loader_v2(param, loaded_weight_shard, shard_id)
def weight_loader_v2(self,
param: BasevLLMParameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[str] = None):
if loaded_shard_id is None: # special case for certain models
if isinstance(param, PerTensorScaleParameter):
param.load_qkv_weight(loaded_weight=loaded_weight, shard_id=0)
return
elif type(param) in (RowvLLMParameter, BasevLLMParameter):
param.load_qkv_weight(loaded_weight=loaded_weight)
return
# TODO: @dsikka - move to parameter.py
self._load_fused_module_from_checkpoint(param, loaded_weight)
return
assert loaded_shard_id in ["q", "k", "v"]
shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
shard_size = self._get_shard_size_mapping(loaded_shard_id)
param.load_qkv_weight(loaded_weight=loaded_weight,
num_heads=self.num_kv_head_replicas,
shard_id=loaded_shard_id,
shard_offset=shard_offset,
shard_size=shard_size)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[str] = None):
# Special case for GGUF
# initialize GGUF param after we know the quantize type
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type and loaded_shard_id is not None:
idx_map = {"q": 0, "k": 1, "v": 2}
param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
return
if is_gguf_weight:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
output_dim = getattr(param, "output_dim", None)
shard_size = loaded_weight.size(output_dim) // tp_size
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
param.shard_id.append(loaded_shard_id)
param.shard_id_map[loaded_shard_id] = len(param.data_container)
param.data_container.append(loaded_weight)
if len(param.data_container) == 3:
self.qweight = param.materialize_nested()
return
param_data = param.data
output_dim = getattr(param, "output_dim", None)
# Special case for AQLM codebooks.
is_metadata = getattr(param, "is_metadata", False)
# Special case for per-tensor scales in fused case.
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
if loaded_shard_id is None:
# Loaded weight is already fused on disk (qkv).
# (e.g., Phi-3's qkv_proj).
if output_dim is None:
if needs_scalar_to_array:
param_data, loaded_weight = adjust_scalar_to_fused_array(
param_data, loaded_weight, 0)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
return
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("q", 0, self.total_num_heads * self.head_size),
("k", self.total_num_heads * self.head_size,
self.total_num_kv_heads * self.head_size),
("v", (self.total_num_heads + self.total_num_kv_heads) *
self.head_size, self.total_num_kv_heads * self.head_size),
]
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
False)
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantized Weights.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
if use_bitsandbytes_4bit:
orig_qkv_offsets = {
"q": (0, self.total_num_heads * self.head_size),
"k": (self.total_num_heads * self.head_size,
self.total_num_kv_heads * self.head_size),
"v":
((self.total_num_heads + self.total_num_kv_heads) *
self.head_size,
self.total_num_kv_heads * self.head_size),
"total":
((self.total_num_heads + 2 * self.total_num_kv_heads) *
self.head_size, 0)
}
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
param, orig_qkv_offsets, shard_id)
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
tp_rank = get_tensor_model_parallel_rank()
assert loaded_shard_id in ["q", "k", "v"]
# If output dim is defined, use the default loading process.
if output_dim is not None:
if loaded_shard_id == "q":
shard_offset = 0
shard_size = self.num_heads * self.head_size
elif loaded_shard_id == "k":
shard_offset = self.num_heads * self.head_size
shard_size = self.num_kv_heads * self.head_size
elif loaded_shard_id == "v":
shard_offset = (self.num_heads +
self.num_kv_heads) * self.head_size
shard_size = self.num_kv_heads * self.head_size
# Special case for Quantized Weights.
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit",
False)
if use_bitsandbytes_4bit:
orig_qkv_offsets = {
"q": (0, self.num_heads * self.head_size),
"k": (self.num_heads * self.head_size,
self.num_kv_heads * self.head_size),
"v":
((self.num_heads + self.num_kv_heads) * self.head_size,
self.num_kv_heads * self.head_size),
"total":
((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
0)
}
shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
param, orig_qkv_offsets, loaded_shard_id)
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
if loaded_shard_id == "q":
shard_id = tp_rank
else:
shard_id = tp_rank // self.num_kv_head_replicas
start_idx = shard_id * shard_size
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if not use_bitsandbytes_4bit:
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
shard_size = loaded_weight.shape[0]
shard_index = ["q", "k", "v"].index(loaded_shard_id)
param_data = param_data.narrow(0, shard_index * shard_size,
shard_size)
# Special case for per-tensor scales in fused case.
elif needs_scalar_to_array:
param_data, loaded_weight = adjust_scalar_to_fused_array(
param_data, loaded_weight, loaded_shard_id)
else:
2023-12-15 19:04:22 +08:00
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
class RowParallelLinear(LinearBase):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
skip_bias_add: This was added to enable performance optimization where
bias can be fused with other element-wise operations.
We skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
input_is_parallel: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
quant_config: Optional[QuantizationConfig] = None,
2024-07-20 12:36:57 -04:00
prefix: str = ""):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
2024-07-20 12:36:57 -04:00
quant_config, prefix)
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results
# Divide the weight matrix along the last dimension.
self.tp_rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, self.tp_size)
assert self.quant_method is not None
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size_per_partition,
output_partition_sizes=[self.output_size],
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=(
self.weight_loader_v2 if self.quant_method.__class__.__name__
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
if not reduce_results and (bias and not skip_bias_add):
raise ValueError("When not reduce the results, adding bias to the "
"results can lead to incorrect results")
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
input_dim = getattr(param, "input_dim", None)
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
# Special case for GGUF
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type:
param.weight_type = loaded_weight.item()
# Materialize GGUF UninitializedParameter
if is_gguf_weight and isinstance(param, UninitializedParameter):
weight_shape = list(loaded_weight.shape)
if input_dim:
weight_shape[input_dim] = weight_shape[input_dim] // tp_size
param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)
param_data = param.data
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if input_dim is not None and not use_bitsandbytes_4bit:
shard_size = param_data.shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
shard_size)
# Special case for loading scales off disk, which often do not
# have a shape (such as in the case of AutoFP8).
if len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def weight_loader_v2(self, param: BasevLLMParameter,
loaded_weight: torch.Tensor):
# Special case for loading scales off disk, which often do not
# have a shape (such as in the case of AutoFP8).
if len(loaded_weight.shape) == 0:
assert loaded_weight.numel() == 1
loaded_weight = loaded_weight.reshape(1)
param.load_row_parallel_weight(loaded_weight=loaded_weight)
def forward(self, input_):
if self.input_is_parallel:
input_parallel = input_
else:
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
assert self.quant_method is not None
# Only fuse bias add into GEMM for rank 0 (this ensures that
# bias will not get added more than once in TP>1 case)
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
output_parallel = self.quant_method.apply(self,
input_parallel,
bias=bias_)
if self.reduce_results and self.tp_size > 1:
output = tensor_model_parallel_all_reduce(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
def extra_repr(self) -> str:
s = f"input_features={self.input_size_per_partition}"
s += f", output_features={self.output_size}"
s += f", bias={self.bias is not None}"
s += f", tp_size={self.tp_size}"
s += f", reduce_results={self.reduce_results}"
return s