2024-02-18 16:44:50 -08:00
|
|
|
"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
|
2024-03-27 00:33:26 -07:00
|
|
|
vLLM will allocate all the available memory, so we need to run the tests one
|
|
|
|
by one. The solution is to pass arguments (model name) by environment
|
|
|
|
variables.
|
|
|
|
Run:
|
|
|
|
```sh
|
2024-05-13 22:50:09 +08:00
|
|
|
cd $VLLM_PATH/tests
|
|
|
|
|
2024-03-27 00:33:26 -07:00
|
|
|
TEST_DIST_MODEL=facebook/opt-125m pytest \
|
2024-05-13 22:50:09 +08:00
|
|
|
distributed/test_basic_distributed_correctness.py
|
2024-03-27 00:33:26 -07:00
|
|
|
TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf \
|
2024-05-13 22:50:09 +08:00
|
|
|
distributed/test_basic_distributed_correctness.py
|
2024-03-27 00:33:26 -07:00
|
|
|
```
|
2024-02-18 16:44:50 -08:00
|
|
|
"""
|
2024-03-27 00:33:26 -07:00
|
|
|
import os
|
|
|
|
|
2024-02-18 16:44:50 -08:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
MODELS = [
|
2024-03-27 00:33:26 -07:00
|
|
|
os.environ["TEST_DIST_MODEL"],
|
2024-02-18 16:44:50 -08:00
|
|
|
]
|
2024-05-14 10:38:59 -07:00
|
|
|
DISTRIBUTED_EXECUTOR_BACKEND = "DISTRIBUTED_EXECUTOR_BACKEND"
|
2024-05-03 15:51:27 -07:00
|
|
|
VLLM_ATTENTION_BACKEND = "VLLM_ATTENTION_BACKEND"
|
2024-02-18 16:44:50 -08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [5])
|
|
|
|
def test_models(
|
|
|
|
hf_runner,
|
|
|
|
vllm_runner,
|
|
|
|
example_prompts,
|
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
) -> None:
|
2024-05-14 10:38:59 -07:00
|
|
|
distributed_executor_backend = os.getenv(DISTRIBUTED_EXECUTOR_BACKEND)
|
|
|
|
|
2024-05-03 15:51:27 -07:00
|
|
|
backend_by_env_var = os.getenv(VLLM_ATTENTION_BACKEND)
|
2024-05-14 10:38:59 -07:00
|
|
|
enforce_eager = backend_by_env_var == "FLASHINFER"
|
2024-04-11 09:56:48 +09:00
|
|
|
|
2024-06-07 22:31:32 -07:00
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
2024-02-18 16:44:50 -08:00
|
|
|
|
2024-05-14 10:38:59 -07:00
|
|
|
vllm_model = vllm_runner(
|
|
|
|
model,
|
|
|
|
dtype=dtype,
|
|
|
|
tensor_parallel_size=2,
|
|
|
|
enforce_eager=enforce_eager,
|
|
|
|
distributed_executor_backend=distributed_executor_backend)
|
2024-02-18 16:44:50 -08:00
|
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
del vllm_model
|
|
|
|
|
|
|
|
for i in range(len(example_prompts)):
|
|
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
|
|
assert hf_output_str == vllm_output_str, (
|
|
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|