vllm/docs/source/getting_started/xpu-installation.md

75 lines
2.1 KiB
Markdown
Raw Normal View History

(installation-xpu)=
# Installation with XPU
vLLM initially supports basic model inferencing and serving on Intel GPU platform.
Table of contents:
1. [Requirements](#xpu-backend-requirements)
2. [Quick start using Dockerfile](#xpu-backend-quick-start-dockerfile)
3. [Build from source](#build-xpu-backend-from-source)
(xpu-backend-requirements)=
## Requirements
- OS: Linux
- Supported Hardware: Intel Data Center GPU, Intel ARC GPU
- OneAPI requirements: oneAPI 2024.2
(xpu-backend-quick-start-dockerfile)=
## Quick start using Dockerfile
```console
$ docker build -f Dockerfile.xpu -t vllm-xpu-env --shm-size=4g .
$ docker run -it \
--rm \
--network=host \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
vllm-xpu-env
```
(build-xpu-backend-from-source)=
## Build from source
- First, install required driver and intel OneAPI 2024.2 or later.
- Second, install Python packages for vLLM XPU backend building:
```console
$ source /opt/intel/oneapi/setvars.sh
$ pip install --upgrade pip
$ pip install -v -r requirements-xpu.txt
```
- Finally, build and install vLLM XPU backend:
```console
$ VLLM_TARGET_DEVICE=xpu python setup.py install
```
```{note}
- FP16 is the default data type in the current XPU backend. The BF16 data
type will be supported in the future.
```
## Distributed inference and serving
XPU platform supports tensor-parallel inference/serving and also supports pipeline parallel as a beta feature for online serving. We requires Ray as the distributed runtime backend. For example, a reference execution likes following:
```console
$ python -m vllm.entrypoints.openai.api_server \
$ --model=facebook/opt-13b \
$ --dtype=bfloat16 \
$ --device=xpu \
$ --max_model_len=1024 \
$ --distributed-executor-backend=ray \
$ --pipeline-parallel-size=2 \
$ -tp=8
```
By default, a ray instance will be launched automatically if no existing one is detected in system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the <gh-file:examples/run_cluster.sh> helper script.