vllm/tests/models/test_llava.py

138 lines
4.8 KiB
Python
Raw Normal View History

from typing import List, Optional, Tuple, Type
import pytest
from transformers import AutoTokenizer
from vllm.config import VisionLanguageConfig
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
from .utils import check_outputs_equal
2024-06-06 18:17:18 +08:00
pytestmark = pytest.mark.vlm
2024-06-06 18:17:18 +08:00
# The image token is placed before "user" on purpose so that the test can pass
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
2024-06-06 18:17:18 +08:00
"<image>\nUSER: What's the content of the image?\nASSISTANT:",
"cherry_blossom":
2024-06-06 18:17:18 +08:00
"<image>\nUSER: What is the season?\nASSISTANT:",
})
2024-06-06 18:17:18 +08:00
2024-06-03 13:56:41 +08:00
def iter_llava_configs(model_name: str):
image_hw_to_feature_size = {
(336, 336): 576,
}
for (h, w), f in image_hw_to_feature_size.items():
for input_type, input_shape in [
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
(VisionLanguageConfig.ImageInputType.IMAGE_FEATURES, (1, f, 1024)),
]:
yield (model_name,
VisionLanguageConfig(image_input_type=input_type,
image_feature_size=f,
image_token_id=32000,
image_input_shape=input_shape,
image_processor=model_name,
image_processor_revision=None))
model_and_vl_config = [
2024-06-03 13:56:41 +08:00
*iter_llava_configs("llava-hf/llava-1.5-7b-hf"),
]
2024-06-06 18:17:18 +08:00
def vllm_to_hf_output(vllm_output: Tuple[List[int], str],
vlm_config: VisionLanguageConfig, model_id: str):
"""Sanitize vllm output to be comparable with hf output.
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
It also reduces `output_str` from "<image><image>bla" to "bla".
"""
output_ids, output_str = vllm_output
2024-06-06 18:17:18 +08:00
image_token_id = vlm_config.image_token_id
tokenizer = AutoTokenizer.from_pretrained(model_id)
image_token_str = tokenizer.decode(image_token_id)
hf_output_ids = [
token_id for idx, token_id in enumerate(output_ids)
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
2024-06-06 18:17:18 +08:00
]
hf_output_str = output_str \
.replace(image_token_str * vlm_config.image_feature_size, "")
return hf_output_ids, hf_output_str
2024-06-06 18:17:18 +08:00
def run_test(
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
model_and_config: Tuple[str, VisionLanguageConfig],
*,
dtype: str,
max_tokens: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
2024-06-03 13:56:41 +08:00
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalData objects and corresponding
vision language config as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
2024-06-06 18:17:18 +08:00
model_id, vlm_config = model_and_config
hf_images = [asset.for_hf() for asset in image_assets]
vllm_images = [asset.for_vllm(vlm_config) for asset in image_assets]
2024-06-03 13:56:41 +08:00
with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model:
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS,
max_tokens,
images=hf_images)
2024-06-06 18:17:18 +08:00
vllm_image_prompts = [
p.replace("<image>", "<image>" * vlm_config.image_feature_size)
for p in HF_IMAGE_PROMPTS
]
with vllm_runner(model_id,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True,
**vlm_config.as_cli_args_dict()) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
max_tokens,
images=vllm_images)
check_outputs_equal(
hf_outputs,
[
vllm_to_hf_output(vllm_output, vlm_config, model_id)
for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(hf_runner, vllm_runner, image_assets, model_and_config,
dtype: str, max_tokens: int) -> None:
run_test(
hf_runner,
vllm_runner,
image_assets,
model_and_config,
dtype=dtype,
max_tokens=max_tokens,
tensor_parallel_size=1,
)