vllm/tests/entrypoints/openai/test_accuracy.py

56 lines
1.5 KiB
Python
Raw Normal View History

"""
This file test accuracy of the vLLM server via LMEval.
It uses local-completions, which interacts with vLLM
through the OAI API with N concurrent connections.
This simulates real work usage of the API and makes
sure that the zmq frontend mp RPC message passing and
AsyncLLMEngine are working correctly.
"""
import lm_eval
import pytest
from ...utils import RemoteOpenAIServer
MODEL_NAME = "Qwen/Qwen2-1.5B-Instruct"
NUM_CONCURRENT = 500
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
EXPECTED_VALUE = 0.58
@pytest.fixture(scope="module")
def server():
args = [
"--max-model-len", "4096", "--enable-chunked-prefill",
"--disable-log-requests", "--enforce-eager"
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.fixture(scope="module")
def server_data(server):
return {
"url": f"{server.url_for('v1')}/completions",
}
def test_lm_eval_accuracy(server_data):
model_args = (f"model={MODEL_NAME},"
f"base_url={server_data['url']},"
f"num_concurrent={NUM_CONCURRENT},tokenized_requests=False")
results = lm_eval.simple_evaluate(
model="local-completions",
model_args=model_args,
tasks=TASK,
)
measured_value = results["results"][TASK][FILTER]
assert (measured_value - RTOL < EXPECTED_VALUE
and measured_value + RTOL > EXPECTED_VALUE
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"