2024-06-20 19:00:13 -04:00
|
|
|
import argparse
|
2024-03-25 23:59:47 +09:00
|
|
|
import asyncio
|
2024-08-06 22:21:41 -07:00
|
|
|
import contextlib
|
2024-04-25 16:45:12 -07:00
|
|
|
import datetime
|
2023-02-09 11:26:50 +00:00
|
|
|
import enum
|
2024-03-25 23:59:47 +09:00
|
|
|
import gc
|
2024-09-23 01:44:48 -06:00
|
|
|
import inspect
|
2024-01-04 03:30:22 +08:00
|
|
|
import os
|
2024-09-18 18:38:11 +08:00
|
|
|
import random
|
2023-12-16 21:12:08 -08:00
|
|
|
import socket
|
2024-01-29 08:43:54 +08:00
|
|
|
import subprocess
|
2024-05-30 07:02:25 +08:00
|
|
|
import sys
|
2024-04-25 16:45:12 -07:00
|
|
|
import tempfile
|
|
|
|
import threading
|
2023-05-23 21:39:50 -07:00
|
|
|
import uuid
|
2024-03-25 23:59:47 +09:00
|
|
|
import warnings
|
2024-09-16 17:33:46 +01:00
|
|
|
import weakref
|
2024-08-06 22:21:41 -07:00
|
|
|
from asyncio import FIRST_COMPLETED, ensure_future
|
2024-05-29 04:29:31 +08:00
|
|
|
from functools import lru_cache, partial, wraps
|
2023-09-26 22:27:13 -07:00
|
|
|
from platform import uname
|
2024-08-06 22:21:41 -07:00
|
|
|
from typing import (Any, AsyncGenerator, Awaitable, Callable, Dict, Generic,
|
2024-08-09 10:39:41 +08:00
|
|
|
Hashable, List, Literal, Optional, OrderedDict, Set, Tuple,
|
|
|
|
Type, TypeVar, Union, overload)
|
2024-08-07 12:24:56 -04:00
|
|
|
from uuid import uuid4
|
2023-03-22 04:45:42 +08:00
|
|
|
|
2024-05-31 13:14:50 +08:00
|
|
|
import numpy as np
|
2024-07-20 12:17:24 +08:00
|
|
|
import numpy.typing as npt
|
2023-05-09 15:30:12 -07:00
|
|
|
import psutil
|
2023-03-22 04:45:42 +08:00
|
|
|
import torch
|
2024-06-15 12:45:31 +08:00
|
|
|
import torch.types
|
2024-08-30 08:21:02 -07:00
|
|
|
import yaml
|
2024-08-27 23:13:45 -04:00
|
|
|
from packaging.version import Version
|
2024-08-09 10:39:41 +08:00
|
|
|
from typing_extensions import ParamSpec, TypeIs, assert_never
|
2024-01-24 00:26:37 +01:00
|
|
|
|
2024-05-02 11:13:25 -07:00
|
|
|
import vllm.envs as envs
|
2024-04-25 16:45:12 -07:00
|
|
|
from vllm.logger import enable_trace_function_call, init_logger
|
2024-09-18 18:38:11 +08:00
|
|
|
from vllm.platforms import current_platform
|
2024-01-29 08:43:54 +08:00
|
|
|
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
2024-08-06 16:51:47 -04:00
|
|
|
# Exception strings for non-implemented encoder/decoder scenarios
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_SWA = \
|
|
|
|
"Sliding window attention for encoder/decoder models " + \
|
|
|
|
"is not currently supported."
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE = \
|
|
|
|
"Prefix caching for encoder/decoder models " + \
|
|
|
|
"is not currently supported."
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL = \
|
|
|
|
"Chunked prefill for encoder/decoder models " + \
|
|
|
|
"is not currently supported."
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP = (
|
|
|
|
"Models with logits_soft_cap "
|
|
|
|
"require FlashInfer backend, which is "
|
|
|
|
"currently not supported for encoder/decoder "
|
|
|
|
"models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_LORA = ("LoRA is currently not currently "
|
|
|
|
"supported with encoder/decoder "
|
|
|
|
"models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_PP = ("Pipeline parallelism is not "
|
|
|
|
"currently supported with "
|
|
|
|
"encoder/decoder models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_MM = ("Multimodal is not currently "
|
|
|
|
"supported with encoder/decoder "
|
|
|
|
"models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_SPEC_DEC = ("Speculative decoding is not "
|
|
|
|
"currently supported with encoder/"
|
|
|
|
"decoder models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_BACKEND = ("XFormers is the only backend "
|
|
|
|
"currently supported with encoder/"
|
|
|
|
"decoder models.")
|
|
|
|
|
|
|
|
STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER = ("Prompt adapters are not "
|
|
|
|
"currently supported with encoder/"
|
|
|
|
"decoder models.")
|
|
|
|
|
2024-09-12 00:45:24 -05:00
|
|
|
STR_NOT_IMPL_ENC_DEC_CPU = ("CPU is not currently supported with "
|
|
|
|
"encoder/decoder models.")
|
|
|
|
|
2024-08-06 16:51:47 -04:00
|
|
|
# Efficiently import all enc/dec error strings
|
|
|
|
# rather than having to import all of the above
|
|
|
|
STR_NOT_IMPL_ENC_DEC_ERR_STRS = {
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_SWA": STR_NOT_IMPL_ENC_DEC_SWA,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE": STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL":
|
|
|
|
STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP": STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_LORA": STR_NOT_IMPL_ENC_DEC_LORA,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_PP": STR_NOT_IMPL_ENC_DEC_PP,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_MM": STR_NOT_IMPL_ENC_DEC_MM,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_SPEC_DEC": STR_NOT_IMPL_ENC_DEC_SPEC_DEC,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_BACKEND": STR_NOT_IMPL_ENC_DEC_BACKEND,
|
|
|
|
"STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER": STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER,
|
2024-09-12 00:45:24 -05:00
|
|
|
"STR_NOT_IMPL_ENC_DEC_CPU": STR_NOT_IMPL_ENC_DEC_CPU
|
2024-08-06 16:51:47 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
# Constants related to forcing the attention backend selection
|
|
|
|
|
|
|
|
# String name of register which may be set in order to
|
|
|
|
# force auto-selection of attention backend by Attention
|
|
|
|
# wrapper
|
|
|
|
STR_BACKEND_ENV_VAR: str = "VLLM_ATTENTION_BACKEND"
|
|
|
|
|
|
|
|
# Possible string values of STR_BACKEND_ENV_VAR
|
|
|
|
# register, corresponding to possible backends
|
|
|
|
STR_FLASHINFER_ATTN_VAL: str = "FLASHINFER"
|
|
|
|
STR_TORCH_SDPA_ATTN_VAL: str = "TORCH_SDPA"
|
|
|
|
STR_ROCM_FLASH_ATTN_VAL: str = "ROCM_FLASH"
|
|
|
|
STR_XFORMERS_ATTN_VAL: str = "XFORMERS"
|
|
|
|
STR_FLASH_ATTN_VAL: str = "FLASH_ATTN"
|
|
|
|
STR_INVALID_VAL: str = "INVALID"
|
|
|
|
|
2024-08-13 05:14:14 +08:00
|
|
|
GiB_bytes = 1 << 30
|
|
|
|
"""The number of bytes in one gibibyte (GiB)."""
|
|
|
|
|
2024-01-29 08:43:54 +08:00
|
|
|
STR_DTYPE_TO_TORCH_DTYPE = {
|
|
|
|
"half": torch.half,
|
|
|
|
"bfloat16": torch.bfloat16,
|
|
|
|
"float": torch.float,
|
2024-04-03 16:15:55 -05:00
|
|
|
"fp8": torch.uint8,
|
2024-05-22 13:28:20 -07:00
|
|
|
"fp8_e4m3": torch.uint8,
|
|
|
|
"fp8_e5m2": torch.uint8,
|
2024-01-29 08:43:54 +08:00
|
|
|
}
|
2023-03-22 04:45:42 +08:00
|
|
|
|
2024-07-20 12:17:24 +08:00
|
|
|
TORCH_DTYPE_TO_NUMPY_DTYPE = {
|
|
|
|
torch.float16: np.float16,
|
|
|
|
torch.float32: np.float32,
|
|
|
|
torch.float64: np.float64,
|
|
|
|
torch.uint8: np.uint8,
|
|
|
|
torch.int32: np.int32,
|
|
|
|
torch.int64: np.int64,
|
|
|
|
}
|
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
P = ParamSpec('P')
|
|
|
|
K = TypeVar("K")
|
|
|
|
T = TypeVar("T")
|
2024-07-31 10:38:45 +08:00
|
|
|
U = TypeVar("U")
|
2024-06-15 12:45:31 +08:00
|
|
|
|
2023-02-09 11:26:50 +00:00
|
|
|
|
2024-06-21 15:42:46 -07:00
|
|
|
class _Sentinel:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
ALL_PINNED_SENTINEL = _Sentinel()
|
|
|
|
|
|
|
|
|
2023-02-09 11:26:50 +00:00
|
|
|
class Device(enum.Enum):
|
|
|
|
GPU = enum.auto()
|
|
|
|
CPU = enum.auto()
|
|
|
|
|
|
|
|
|
|
|
|
class Counter:
|
|
|
|
|
|
|
|
def __init__(self, start: int = 0) -> None:
|
|
|
|
self.counter = start
|
|
|
|
|
2023-02-14 01:19:27 +00:00
|
|
|
def __next__(self) -> int:
|
2023-07-03 11:31:55 -07:00
|
|
|
i = self.counter
|
2023-02-09 11:26:50 +00:00
|
|
|
self.counter += 1
|
2023-07-03 11:31:55 -07:00
|
|
|
return i
|
2023-02-09 11:26:50 +00:00
|
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
|
self.counter = 0
|
2023-03-22 04:45:42 +08:00
|
|
|
|
2023-03-29 14:48:56 +08:00
|
|
|
|
2024-03-20 00:36:09 -07:00
|
|
|
class LRUCache(Generic[T]):
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def __init__(self, capacity: int):
|
2024-04-16 06:47:31 +09:00
|
|
|
self.cache: OrderedDict[Hashable, T] = OrderedDict()
|
2024-06-21 15:42:46 -07:00
|
|
|
self.pinned_items: Set[Hashable] = set()
|
2024-01-24 00:26:37 +01:00
|
|
|
self.capacity = capacity
|
|
|
|
|
|
|
|
def __contains__(self, key: Hashable) -> bool:
|
|
|
|
return key in self.cache
|
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return len(self.cache)
|
|
|
|
|
2024-07-31 10:38:03 +08:00
|
|
|
def __getitem__(self, key: Hashable) -> T:
|
|
|
|
value = self.cache[key] # Raise KeyError if not exists
|
|
|
|
self.cache.move_to_end(key)
|
|
|
|
return value
|
2024-01-24 00:26:37 +01:00
|
|
|
|
2024-03-20 00:36:09 -07:00
|
|
|
def __setitem__(self, key: Hashable, value: T) -> None:
|
2024-01-24 00:26:37 +01:00
|
|
|
self.put(key, value)
|
|
|
|
|
|
|
|
def __delitem__(self, key: Hashable) -> None:
|
|
|
|
self.pop(key)
|
|
|
|
|
|
|
|
def touch(self, key: Hashable) -> None:
|
|
|
|
self.cache.move_to_end(key)
|
|
|
|
|
2024-03-20 00:36:09 -07:00
|
|
|
def get(self,
|
|
|
|
key: Hashable,
|
|
|
|
default_value: Optional[T] = None) -> Optional[T]:
|
2024-07-31 10:38:03 +08:00
|
|
|
value: Optional[T]
|
2024-01-24 00:26:37 +01:00
|
|
|
if key in self.cache:
|
2024-07-31 10:38:03 +08:00
|
|
|
value = self.cache[key]
|
2024-01-24 00:26:37 +01:00
|
|
|
self.cache.move_to_end(key)
|
|
|
|
else:
|
|
|
|
value = default_value
|
|
|
|
return value
|
|
|
|
|
2024-03-20 00:36:09 -07:00
|
|
|
def put(self, key: Hashable, value: T) -> None:
|
2024-01-24 00:26:37 +01:00
|
|
|
self.cache[key] = value
|
|
|
|
self.cache.move_to_end(key)
|
|
|
|
self._remove_old_if_needed()
|
|
|
|
|
2024-06-21 15:42:46 -07:00
|
|
|
def pin(self, key: Hashable) -> None:
|
|
|
|
"""
|
|
|
|
Pins a key in the cache preventing it from being
|
|
|
|
evicted in the LRU order.
|
|
|
|
"""
|
|
|
|
if key not in self.cache:
|
|
|
|
raise ValueError(f"Cannot pin key: {key} not in cache.")
|
|
|
|
self.pinned_items.add(key)
|
|
|
|
|
|
|
|
def _unpin(self, key: Hashable) -> None:
|
|
|
|
self.pinned_items.remove(key)
|
|
|
|
|
2024-04-13 06:35:50 +09:00
|
|
|
def _on_remove(self, key: Hashable, value: Optional[T]):
|
2024-01-24 00:26:37 +01:00
|
|
|
pass
|
|
|
|
|
2024-06-21 15:42:46 -07:00
|
|
|
def remove_oldest(self, remove_pinned=False):
|
2024-01-24 00:26:37 +01:00
|
|
|
if not self.cache:
|
|
|
|
return
|
2024-06-21 15:42:46 -07:00
|
|
|
|
|
|
|
if not remove_pinned:
|
|
|
|
# pop the oldest item in the cache that is not pinned
|
|
|
|
lru_key = next(
|
|
|
|
(key for key in self.cache if key not in self.pinned_items),
|
|
|
|
ALL_PINNED_SENTINEL)
|
|
|
|
if lru_key is ALL_PINNED_SENTINEL:
|
|
|
|
raise RuntimeError("All items are pinned, "
|
|
|
|
"cannot remove oldest from the cache.")
|
|
|
|
else:
|
|
|
|
lru_key = next(iter(self.cache))
|
|
|
|
self.pop(lru_key)
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def _remove_old_if_needed(self) -> None:
|
|
|
|
while len(self.cache) > self.capacity:
|
|
|
|
self.remove_oldest()
|
|
|
|
|
2024-04-13 06:35:50 +09:00
|
|
|
def pop(self,
|
|
|
|
key: Hashable,
|
|
|
|
default_value: Optional[T] = None) -> Optional[T]:
|
2024-01-24 00:26:37 +01:00
|
|
|
run_on_remove = key in self.cache
|
2024-04-13 06:35:50 +09:00
|
|
|
value: Optional[T] = self.cache.pop(key, default_value)
|
2024-06-21 15:42:46 -07:00
|
|
|
# remove from pinned items
|
|
|
|
if key in self.pinned_items:
|
|
|
|
self._unpin(key)
|
2024-01-24 00:26:37 +01:00
|
|
|
if run_on_remove:
|
|
|
|
self._on_remove(key, value)
|
|
|
|
return value
|
|
|
|
|
|
|
|
def clear(self):
|
|
|
|
while len(self.cache) > 0:
|
2024-06-21 15:42:46 -07:00
|
|
|
self.remove_oldest(remove_pinned=True)
|
2024-01-24 00:26:37 +01:00
|
|
|
self.cache.clear()
|
|
|
|
|
|
|
|
|
2024-08-09 00:34:28 -04:00
|
|
|
class PyObjectCache:
|
2024-09-16 20:04:48 -07:00
|
|
|
"""Used to cache python objects to avoid object allocations
|
2024-08-09 00:34:28 -04:00
|
|
|
across scheduler iterations.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, obj_builder):
|
|
|
|
self._obj_builder = obj_builder
|
|
|
|
self._index = 0
|
|
|
|
|
|
|
|
self._obj_cache = []
|
|
|
|
for _ in range(128):
|
|
|
|
self._obj_cache.append(self._obj_builder())
|
|
|
|
|
|
|
|
def _grow_cache(self):
|
|
|
|
# Double the size of the cache
|
|
|
|
num_objs = len(self._obj_cache)
|
|
|
|
for _ in range(num_objs):
|
|
|
|
self._obj_cache.append(self._obj_builder())
|
|
|
|
|
|
|
|
def get_object(self):
|
2024-09-16 20:04:48 -07:00
|
|
|
"""Returns a pre-allocated cached object. If there is not enough
|
2024-08-09 00:34:28 -04:00
|
|
|
objects, then the cache size will double.
|
|
|
|
"""
|
|
|
|
if self._index >= len(self._obj_cache):
|
|
|
|
self._grow_cache()
|
|
|
|
assert self._index < len(self._obj_cache)
|
|
|
|
|
|
|
|
obj = self._obj_cache[self._index]
|
|
|
|
self._index += 1
|
|
|
|
|
|
|
|
return obj
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
"""Makes all cached-objects available for the next scheduler iteration.
|
|
|
|
"""
|
|
|
|
self._index = 0
|
|
|
|
|
|
|
|
|
2023-12-08 15:16:52 +08:00
|
|
|
def is_hip() -> bool:
|
|
|
|
return torch.version.hip is not None
|
|
|
|
|
|
|
|
|
2024-04-02 13:07:30 +08:00
|
|
|
@lru_cache(maxsize=None)
|
|
|
|
def is_cpu() -> bool:
|
2024-04-02 23:06:25 -07:00
|
|
|
from importlib.metadata import PackageNotFoundError, version
|
|
|
|
try:
|
|
|
|
return "cpu" in version("vllm")
|
|
|
|
except PackageNotFoundError:
|
|
|
|
return False
|
2024-04-02 13:07:30 +08:00
|
|
|
|
|
|
|
|
2024-06-28 17:50:16 +04:00
|
|
|
@lru_cache(maxsize=None)
|
|
|
|
def is_openvino() -> bool:
|
|
|
|
from importlib.metadata import PackageNotFoundError, version
|
|
|
|
try:
|
|
|
|
return "openvino" in version("vllm")
|
|
|
|
except PackageNotFoundError:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
2024-03-19 14:34:15 -07:00
|
|
|
@lru_cache(maxsize=None)
|
2024-02-28 09:34:34 -08:00
|
|
|
def is_neuron() -> bool:
|
|
|
|
try:
|
|
|
|
import transformers_neuronx
|
|
|
|
except ImportError:
|
|
|
|
transformers_neuronx = None
|
|
|
|
return transformers_neuronx is not None
|
|
|
|
|
|
|
|
|
2024-06-18 02:01:25 +08:00
|
|
|
@lru_cache(maxsize=None)
|
|
|
|
def is_xpu() -> bool:
|
2024-08-12 23:07:20 +00:00
|
|
|
from importlib.metadata import PackageNotFoundError, version
|
|
|
|
try:
|
|
|
|
is_xpu_flag = "xpu" in version("vllm")
|
|
|
|
except PackageNotFoundError:
|
|
|
|
return False
|
2024-06-18 02:01:25 +08:00
|
|
|
# vllm is not build with xpu
|
|
|
|
if not is_xpu_flag:
|
|
|
|
return False
|
|
|
|
try:
|
|
|
|
import intel_extension_for_pytorch as ipex # noqa: F401
|
|
|
|
_import_ipex = True
|
|
|
|
except ImportError as e:
|
|
|
|
logger.warning("Import Error for IPEX: %s", e.msg)
|
|
|
|
_import_ipex = False
|
|
|
|
# ipex dependency is not ready
|
|
|
|
if not _import_ipex:
|
|
|
|
logger.warning("not found ipex lib")
|
|
|
|
return False
|
|
|
|
return hasattr(torch, "xpu") and torch.xpu.is_available()
|
|
|
|
|
|
|
|
|
2024-03-19 14:34:15 -07:00
|
|
|
@lru_cache(maxsize=None)
|
2023-09-26 22:27:13 -07:00
|
|
|
def get_max_shared_memory_bytes(gpu: int = 0) -> int:
|
|
|
|
"""Returns the maximum shared memory per thread block in bytes."""
|
2024-08-13 00:30:30 -07:00
|
|
|
from vllm import _custom_ops as ops
|
2024-03-10 19:49:14 -07:00
|
|
|
max_shared_mem = (
|
2024-06-09 16:23:30 -04:00
|
|
|
ops.get_max_shared_memory_per_block_device_attribute(gpu))
|
2024-03-10 19:49:14 -07:00
|
|
|
# value 0 will cause MAX_SEQ_LEN become negative and test_attention.py
|
|
|
|
# will fail
|
2024-01-26 15:41:10 -05:00
|
|
|
assert max_shared_mem > 0, "max_shared_mem can not be zero"
|
2023-09-26 22:27:13 -07:00
|
|
|
return int(max_shared_mem)
|
|
|
|
|
|
|
|
|
2023-03-29 14:48:56 +08:00
|
|
|
def get_cpu_memory() -> int:
|
2023-05-23 18:22:26 -07:00
|
|
|
"""Returns the total CPU memory of the node in bytes."""
|
2023-03-29 14:48:56 +08:00
|
|
|
return psutil.virtual_memory().total
|
2023-05-23 21:39:50 -07:00
|
|
|
|
|
|
|
|
2024-09-18 18:38:11 +08:00
|
|
|
def seed_everything(seed: int) -> None:
|
|
|
|
"""
|
|
|
|
Set the seed of each random module.
|
|
|
|
|
|
|
|
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
|
|
|
"""
|
|
|
|
random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
|
|
|
if current_platform.is_cuda_alike():
|
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
|
|
|
if is_xpu():
|
|
|
|
torch.xpu.manual_seed_all(seed)
|
|
|
|
|
|
|
|
|
2023-05-23 21:39:50 -07:00
|
|
|
def random_uuid() -> str:
|
|
|
|
return str(uuid.uuid4().hex)
|
2023-06-29 15:00:21 -07:00
|
|
|
|
2023-07-03 11:31:55 -07:00
|
|
|
|
2024-04-18 16:15:12 -07:00
|
|
|
@lru_cache(maxsize=None)
|
2024-06-15 12:45:31 +08:00
|
|
|
def get_vllm_instance_id() -> str:
|
2024-04-18 16:15:12 -07:00
|
|
|
"""
|
|
|
|
If the environment variable VLLM_INSTANCE_ID is set, return it.
|
|
|
|
Otherwise, return a random UUID.
|
|
|
|
Instance id represents an instance of the VLLM. All processes in the same
|
|
|
|
instance should have the same instance id.
|
|
|
|
"""
|
2024-05-02 11:13:25 -07:00
|
|
|
return envs.VLLM_INSTANCE_ID or f"vllm-instance-{random_uuid()}"
|
2024-04-18 16:15:12 -07:00
|
|
|
|
|
|
|
|
2024-03-19 14:34:15 -07:00
|
|
|
@lru_cache(maxsize=None)
|
2023-06-29 15:00:21 -07:00
|
|
|
def in_wsl() -> bool:
|
|
|
|
# Reference: https://github.com/microsoft/WSL/issues/4071
|
|
|
|
return "microsoft" in " ".join(uname()).lower()
|
2023-12-16 21:12:08 -08:00
|
|
|
|
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
def make_async(func: Callable[P, T]) -> Callable[P, Awaitable[T]]:
|
2024-01-24 00:26:37 +01:00
|
|
|
"""Take a blocking function, and run it on in an executor thread.
|
|
|
|
|
|
|
|
This function prevents the blocking function from blocking the
|
|
|
|
asyncio event loop.
|
|
|
|
The code in this function needs to be thread safe.
|
|
|
|
"""
|
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
def _async_wrapper(*args: P.args, **kwargs: P.kwargs) -> asyncio.Future:
|
2024-01-24 00:26:37 +01:00
|
|
|
loop = asyncio.get_event_loop()
|
|
|
|
p_func = partial(func, *args, **kwargs)
|
|
|
|
return loop.run_in_executor(executor=None, func=p_func)
|
|
|
|
|
|
|
|
return _async_wrapper
|
|
|
|
|
|
|
|
|
2024-08-06 22:21:41 -07:00
|
|
|
async def iterate_with_cancellation(
|
|
|
|
iterator: AsyncGenerator[T, None],
|
|
|
|
is_cancelled: Callable[[], Awaitable[bool]],
|
|
|
|
) -> AsyncGenerator[T, None]:
|
|
|
|
"""Convert async iterator into one that polls the provided function
|
|
|
|
at least once per second to check for client cancellation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Can use anext() in python >= 3.10
|
|
|
|
awaits = [ensure_future(iterator.__anext__())]
|
|
|
|
while True:
|
|
|
|
done, pending = await asyncio.wait(awaits, timeout=1)
|
|
|
|
if await is_cancelled():
|
|
|
|
with contextlib.suppress(BaseException):
|
|
|
|
awaits[0].cancel()
|
|
|
|
await iterator.aclose()
|
|
|
|
raise asyncio.CancelledError("client cancelled")
|
|
|
|
if done:
|
|
|
|
try:
|
|
|
|
item = await awaits[0]
|
|
|
|
awaits[0] = ensure_future(iterator.__anext__())
|
|
|
|
yield item
|
|
|
|
except StopAsyncIteration:
|
|
|
|
# we are done
|
|
|
|
return
|
2024-08-02 21:27:28 -04:00
|
|
|
|
|
|
|
|
2024-08-06 22:21:41 -07:00
|
|
|
async def merge_async_iterators(
|
|
|
|
*iterators: AsyncGenerator[T, None],
|
2024-08-07 13:35:14 -07:00
|
|
|
is_cancelled: Optional[Callable[[], Awaitable[bool]]] = None,
|
2024-08-06 22:21:41 -07:00
|
|
|
) -> AsyncGenerator[Tuple[int, T], None]:
|
2024-04-12 13:30:54 +08:00
|
|
|
"""Merge multiple asynchronous iterators into a single iterator.
|
|
|
|
|
|
|
|
This method handle the case where some iterators finish before others.
|
|
|
|
When it yields, it yields a tuple (i, item) where i is the index of the
|
|
|
|
iterator that yields the item.
|
2024-08-06 22:21:41 -07:00
|
|
|
|
2024-08-07 13:35:14 -07:00
|
|
|
It also optionally polls a provided function at least once per second
|
|
|
|
to check for client cancellation.
|
2024-04-12 13:30:54 +08:00
|
|
|
"""
|
2024-08-06 22:21:41 -07:00
|
|
|
|
|
|
|
# Can use anext() in python >= 3.10
|
|
|
|
awaits = {
|
|
|
|
ensure_future(pair[1].__anext__()): pair
|
|
|
|
for pair in enumerate(iterators)
|
|
|
|
}
|
2024-08-07 13:35:14 -07:00
|
|
|
timeout = None if is_cancelled is None else 1
|
2024-08-06 22:21:41 -07:00
|
|
|
try:
|
|
|
|
while awaits:
|
|
|
|
done, pending = await asyncio.wait(awaits.keys(),
|
|
|
|
return_when=FIRST_COMPLETED,
|
2024-08-07 13:35:14 -07:00
|
|
|
timeout=timeout)
|
|
|
|
if is_cancelled is not None and await is_cancelled():
|
2024-08-06 22:21:41 -07:00
|
|
|
raise asyncio.CancelledError("client cancelled")
|
|
|
|
for d in done:
|
|
|
|
pair = awaits.pop(d)
|
|
|
|
try:
|
|
|
|
item = await d
|
|
|
|
i, it = pair
|
|
|
|
awaits[ensure_future(it.__anext__())] = pair
|
|
|
|
yield i, item
|
|
|
|
except StopAsyncIteration:
|
|
|
|
pass
|
|
|
|
finally:
|
|
|
|
# Cancel any remaining iterators
|
|
|
|
for f, (_, it) in awaits.items():
|
|
|
|
with contextlib.suppress(BaseException):
|
|
|
|
f.cancel()
|
|
|
|
await it.aclose()
|
2024-04-12 13:30:54 +08:00
|
|
|
|
|
|
|
|
2024-01-04 03:30:22 +08:00
|
|
|
def get_ip() -> str:
|
2024-05-02 11:13:25 -07:00
|
|
|
host_ip = envs.VLLM_HOST_IP
|
2024-03-14 21:32:52 -07:00
|
|
|
if host_ip:
|
|
|
|
return host_ip
|
|
|
|
|
|
|
|
# IP is not set, try to get it from the network interface
|
|
|
|
|
2024-02-27 11:22:16 +08:00
|
|
|
# try ipv4
|
2024-01-10 11:39:58 -08:00
|
|
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
2024-02-27 11:22:16 +08:00
|
|
|
try:
|
2024-03-05 03:17:12 +08:00
|
|
|
s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable
|
2024-02-27 11:22:16 +08:00
|
|
|
return s.getsockname()[0]
|
2024-03-14 21:32:52 -07:00
|
|
|
except Exception:
|
|
|
|
pass
|
|
|
|
|
|
|
|
# try ipv6
|
|
|
|
try:
|
2024-02-27 11:22:16 +08:00
|
|
|
s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
|
2024-03-14 21:32:52 -07:00
|
|
|
# Google's public DNS server, see
|
|
|
|
# https://developers.google.com/speed/public-dns/docs/using#addresses
|
|
|
|
s.connect(("2001:4860:4860::8888", 80)) # Doesn't need to be reachable
|
2024-02-27 11:22:16 +08:00
|
|
|
return s.getsockname()[0]
|
2024-03-14 21:32:52 -07:00
|
|
|
except Exception:
|
|
|
|
pass
|
|
|
|
|
|
|
|
warnings.warn(
|
|
|
|
"Failed to get the IP address, using 0.0.0.0 by default."
|
2024-05-02 11:13:25 -07:00
|
|
|
"The value can be set by the environment variable"
|
|
|
|
" VLLM_HOST_IP or HOST_IP.",
|
2024-03-14 21:32:52 -07:00
|
|
|
stacklevel=2)
|
|
|
|
return "0.0.0.0"
|
2024-01-04 03:30:22 +08:00
|
|
|
|
|
|
|
|
2024-01-21 16:31:47 -08:00
|
|
|
def get_distributed_init_method(ip: str, port: int) -> str:
|
2024-03-26 14:39:44 -07:00
|
|
|
# Brackets are not permitted in ipv4 addresses,
|
|
|
|
# see https://github.com/python/cpython/issues/103848
|
|
|
|
return f"tcp://[{ip}]:{port}" if ":" in ip else f"tcp://{ip}:{port}"
|
2024-01-21 16:31:47 -08:00
|
|
|
|
|
|
|
|
2024-08-07 12:24:56 -04:00
|
|
|
def get_open_zmq_ipc_path() -> str:
|
|
|
|
base_rpc_path = envs.VLLM_RPC_BASE_PATH
|
|
|
|
return f"ipc://{base_rpc_path}/{uuid4()}"
|
|
|
|
|
|
|
|
|
|
|
|
def get_open_port() -> int:
|
|
|
|
port = envs.VLLM_PORT
|
2024-05-21 01:45:06 +08:00
|
|
|
if port is not None:
|
2024-06-06 22:15:11 -07:00
|
|
|
while True:
|
|
|
|
try:
|
|
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
|
|
s.bind(("", port))
|
|
|
|
return port
|
|
|
|
except OSError:
|
|
|
|
port += 1 # Increment port number if already in use
|
|
|
|
logger.info("Port %d is already in use, trying port %d",
|
|
|
|
port - 1, port)
|
2024-02-27 11:22:16 +08:00
|
|
|
# try ipv4
|
|
|
|
try:
|
|
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
|
|
s.bind(("", 0))
|
|
|
|
return s.getsockname()[1]
|
|
|
|
except OSError:
|
|
|
|
# try ipv6
|
|
|
|
with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
|
|
|
|
s.bind(("", 0))
|
|
|
|
return s.getsockname()[1]
|
2024-01-04 03:30:22 +08:00
|
|
|
|
|
|
|
|
2024-08-20 17:41:12 -07:00
|
|
|
def find_process_using_port(port: int) -> Optional[psutil.Process]:
|
|
|
|
for conn in psutil.net_connections():
|
|
|
|
if conn.laddr.port == port:
|
|
|
|
try:
|
|
|
|
return psutil.Process(conn.pid)
|
|
|
|
except psutil.NoSuchProcess:
|
|
|
|
return None
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
2024-04-17 01:34:33 -07:00
|
|
|
def update_environment_variables(envs: Dict[str, str]):
|
|
|
|
for k, v in envs.items():
|
2024-04-18 16:15:12 -07:00
|
|
|
if k in os.environ and os.environ[k] != v:
|
2024-04-26 16:16:58 +09:00
|
|
|
logger.warning(
|
|
|
|
"Overwriting environment variable %s "
|
|
|
|
"from '%s' to '%s'", k, os.environ[k], v)
|
2024-04-17 01:34:33 -07:00
|
|
|
os.environ[k] = v
|
2024-01-29 08:43:54 +08:00
|
|
|
|
|
|
|
|
2024-07-19 12:10:56 -07:00
|
|
|
def chunk_list(lst: List[T], chunk_size: int):
|
2024-03-27 23:59:28 -07:00
|
|
|
"""Yield successive chunk_size chunks from lst."""
|
2024-07-19 12:10:56 -07:00
|
|
|
for i in range(0, len(lst), chunk_size):
|
|
|
|
yield lst[i:i + chunk_size]
|
2024-03-27 23:59:28 -07:00
|
|
|
|
|
|
|
|
|
|
|
def cdiv(a: int, b: int) -> int:
|
|
|
|
"""Ceiling division."""
|
|
|
|
return -(a // -b)
|
|
|
|
|
|
|
|
|
2024-04-03 16:15:55 -05:00
|
|
|
def _generate_random_fp8(
|
2024-06-15 12:45:31 +08:00
|
|
|
tensor: torch.Tensor,
|
2024-01-29 08:43:54 +08:00
|
|
|
low: float,
|
|
|
|
high: float,
|
|
|
|
) -> None:
|
|
|
|
# NOTE(zhaoyang): Due to NaN and Inf representation for fp8 data type,
|
|
|
|
# it may occur Inf or NaN if we directly use torch.randint
|
|
|
|
# to generate random data for fp8 data.
|
2024-02-22 02:56:01 +00:00
|
|
|
# For example, s.11111.00 in fp8e5m2 format represents Inf.
|
2024-01-29 08:43:54 +08:00
|
|
|
# | E4M3 | E5M2
|
|
|
|
#-----|-------------|-------------------
|
|
|
|
# Inf | N/A | s.11111.00
|
|
|
|
# NaN | s.1111.111 | s.11111.{01,10,11}
|
2024-04-11 03:26:07 +00:00
|
|
|
from vllm import _custom_ops as ops
|
2024-01-29 08:43:54 +08:00
|
|
|
tensor_tmp = torch.empty_like(tensor, dtype=torch.float16)
|
|
|
|
tensor_tmp.uniform_(low, high)
|
2024-05-09 17:04:17 -07:00
|
|
|
ops.convert_fp8(tensor, tensor_tmp)
|
2024-01-29 08:43:54 +08:00
|
|
|
del tensor_tmp
|
|
|
|
|
|
|
|
|
2024-05-03 15:51:27 -07:00
|
|
|
def get_kv_cache_torch_dtype(
|
|
|
|
cache_dtype: Optional[Union[str, torch.dtype]],
|
|
|
|
model_dtype: Optional[Union[str, torch.dtype]] = None) -> torch.dtype:
|
2024-01-29 08:43:54 +08:00
|
|
|
if isinstance(cache_dtype, str):
|
|
|
|
if cache_dtype == "auto":
|
|
|
|
if isinstance(model_dtype, str):
|
|
|
|
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
|
|
|
|
elif isinstance(model_dtype, torch.dtype):
|
|
|
|
torch_dtype = model_dtype
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Invalid model dtype: {model_dtype}")
|
|
|
|
elif cache_dtype in ["half", "bfloat16", "float"]:
|
|
|
|
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype]
|
2024-04-03 16:15:55 -05:00
|
|
|
elif cache_dtype == "fp8":
|
2024-01-29 08:43:54 +08:00
|
|
|
torch_dtype = torch.uint8
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
|
|
|
|
elif isinstance(cache_dtype, torch.dtype):
|
|
|
|
torch_dtype = cache_dtype
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
|
2024-05-03 15:51:27 -07:00
|
|
|
return torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
def create_kv_caches_with_random_flash(
|
|
|
|
num_blocks: int,
|
|
|
|
block_size: int,
|
|
|
|
num_layers: int,
|
|
|
|
num_heads: int,
|
|
|
|
head_size: int,
|
|
|
|
cache_dtype: Optional[Union[str, torch.dtype]],
|
|
|
|
model_dtype: Optional[Union[str, torch.dtype]] = None,
|
|
|
|
seed: int = 0,
|
|
|
|
device: Optional[str] = "cuda",
|
|
|
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(seed)
|
2024-05-03 15:51:27 -07:00
|
|
|
|
|
|
|
torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)
|
|
|
|
key_value_cache_shape = (num_blocks, 2, block_size, num_heads, head_size)
|
|
|
|
scale = head_size**-0.5
|
2024-06-15 12:45:31 +08:00
|
|
|
|
|
|
|
key_caches: List[torch.Tensor] = []
|
|
|
|
value_caches: List[torch.Tensor] = []
|
|
|
|
|
2024-05-03 15:51:27 -07:00
|
|
|
for _ in range(num_layers):
|
|
|
|
key_value_cache = torch.empty(size=key_value_cache_shape,
|
|
|
|
dtype=torch_dtype,
|
|
|
|
device=device)
|
2024-07-24 11:36:52 -07:00
|
|
|
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
|
|
|
|
key_value_cache.uniform_(-scale, scale)
|
|
|
|
elif cache_dtype == 'fp8':
|
|
|
|
_generate_random_fp8(key_value_cache, -scale, scale)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Does not support key cache of type {cache_dtype}")
|
2024-05-03 15:51:27 -07:00
|
|
|
key_caches.append(key_value_cache[:, 0])
|
|
|
|
value_caches.append(key_value_cache[:, 1])
|
|
|
|
return key_caches, value_caches
|
|
|
|
|
|
|
|
|
|
|
|
def create_kv_caches_with_random(
|
|
|
|
num_blocks: int,
|
|
|
|
block_size: int,
|
|
|
|
num_layers: int,
|
|
|
|
num_heads: int,
|
|
|
|
head_size: int,
|
|
|
|
cache_dtype: Optional[Union[str, torch.dtype]],
|
|
|
|
model_dtype: Optional[Union[str, torch.dtype]] = None,
|
|
|
|
seed: int = 0,
|
|
|
|
device: Optional[str] = "cuda",
|
|
|
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
2024-07-26 20:47:50 -07:00
|
|
|
|
|
|
|
if cache_dtype == "fp8" and head_size % 16:
|
|
|
|
raise ValueError(
|
|
|
|
f"Does not support key cache of type fp8 with head_size {head_size}"
|
|
|
|
)
|
|
|
|
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(seed)
|
2024-05-03 15:51:27 -07:00
|
|
|
|
|
|
|
torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)
|
2024-01-29 08:43:54 +08:00
|
|
|
|
|
|
|
scale = head_size**-0.5
|
|
|
|
x = 16 // torch.tensor([], dtype=torch_dtype).element_size()
|
|
|
|
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
|
2024-06-15 12:45:31 +08:00
|
|
|
key_caches: List[torch.Tensor] = []
|
2024-01-29 08:43:54 +08:00
|
|
|
for _ in range(num_layers):
|
|
|
|
key_cache = torch.empty(size=key_cache_shape,
|
|
|
|
dtype=torch_dtype,
|
|
|
|
device=device)
|
2024-04-03 16:15:55 -05:00
|
|
|
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
|
2024-02-06 11:38:38 -08:00
|
|
|
key_cache.uniform_(-scale, scale)
|
2024-04-03 16:15:55 -05:00
|
|
|
elif cache_dtype == 'fp8':
|
|
|
|
_generate_random_fp8(key_cache, -scale, scale)
|
2024-02-06 11:38:38 -08:00
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Does not support key cache of type {cache_dtype}")
|
2024-01-29 08:43:54 +08:00
|
|
|
key_caches.append(key_cache)
|
|
|
|
|
|
|
|
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
|
2024-06-15 12:45:31 +08:00
|
|
|
value_caches: List[torch.Tensor] = []
|
2024-01-29 08:43:54 +08:00
|
|
|
for _ in range(num_layers):
|
|
|
|
value_cache = torch.empty(size=value_cache_shape,
|
|
|
|
dtype=torch_dtype,
|
|
|
|
device=device)
|
2024-04-03 16:15:55 -05:00
|
|
|
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
|
2024-02-06 11:38:38 -08:00
|
|
|
value_cache.uniform_(-scale, scale)
|
2024-04-03 16:15:55 -05:00
|
|
|
elif cache_dtype == 'fp8':
|
|
|
|
_generate_random_fp8(value_cache, -scale, scale)
|
2024-02-06 11:38:38 -08:00
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Does not support value cache of type {cache_dtype}")
|
2024-01-29 08:43:54 +08:00
|
|
|
value_caches.append(value_cache)
|
|
|
|
return key_caches, value_caches
|
2024-03-07 11:42:42 -08:00
|
|
|
|
|
|
|
|
2024-03-21 18:22:17 -07:00
|
|
|
@lru_cache
|
|
|
|
def print_warning_once(msg: str) -> None:
|
|
|
|
logger.warning(msg)
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=None)
|
|
|
|
def is_pin_memory_available() -> bool:
|
|
|
|
|
|
|
|
if in_wsl():
|
|
|
|
# Pinning memory in WSL is not supported.
|
|
|
|
# https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications
|
|
|
|
print_warning_once("Using 'pin_memory=False' as WSL is detected. "
|
|
|
|
"This may slow down the performance.")
|
|
|
|
return False
|
2024-06-18 02:01:25 +08:00
|
|
|
elif is_xpu():
|
|
|
|
print_warning_once("Pin memory is not supported on XPU.")
|
|
|
|
return False
|
2024-03-21 18:22:17 -07:00
|
|
|
elif is_neuron():
|
|
|
|
print_warning_once("Pin memory is not supported on Neuron.")
|
|
|
|
return False
|
2024-06-28 17:50:16 +04:00
|
|
|
elif is_cpu() or is_openvino():
|
2024-04-02 13:07:30 +08:00
|
|
|
return False
|
2024-03-21 18:22:17 -07:00
|
|
|
return True
|
|
|
|
|
|
|
|
|
2024-09-23 01:44:09 +08:00
|
|
|
class DeviceMemoryProfiler:
|
2024-03-07 11:42:42 -08:00
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
def __init__(self, device: Optional[torch.types.Device] = None):
|
2024-03-07 11:42:42 -08:00
|
|
|
self.device = device
|
|
|
|
|
|
|
|
def current_memory_usage(self) -> float:
|
|
|
|
# Return the memory usage in bytes.
|
2024-09-18 18:38:11 +08:00
|
|
|
if current_platform.is_cuda_alike():
|
2024-06-18 02:01:25 +08:00
|
|
|
torch.cuda.reset_peak_memory_stats(self.device)
|
|
|
|
mem = torch.cuda.max_memory_allocated(self.device)
|
|
|
|
elif is_xpu():
|
2024-07-31 10:38:03 +08:00
|
|
|
torch.xpu.reset_peak_memory_stats(self.device) # type: ignore
|
|
|
|
mem = torch.xpu.max_memory_allocated(self.device) # type: ignore
|
2024-03-07 11:42:42 -08:00
|
|
|
return mem
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
self.initial_memory = self.current_memory_usage()
|
|
|
|
# This allows us to call methods of the context manager if needed
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
self.final_memory = self.current_memory_usage()
|
|
|
|
self.consumed_memory = self.final_memory - self.initial_memory
|
|
|
|
|
|
|
|
# Force garbage collection
|
|
|
|
gc.collect()
|
2024-03-21 18:22:17 -07:00
|
|
|
|
|
|
|
|
2024-07-20 12:17:24 +08:00
|
|
|
def make_ndarray_with_pad(
|
|
|
|
x: List[List[T]],
|
|
|
|
pad: T,
|
|
|
|
dtype: npt.DTypeLike,
|
|
|
|
*,
|
|
|
|
max_len: Optional[int] = None,
|
|
|
|
) -> npt.NDArray:
|
|
|
|
"""
|
|
|
|
Make a padded array from 2D inputs.
|
2024-03-21 18:22:17 -07:00
|
|
|
|
|
|
|
The padding is applied to the end of each inner list until it reaches
|
|
|
|
`max_len`.
|
|
|
|
"""
|
2024-07-20 12:17:24 +08:00
|
|
|
if max_len is None:
|
|
|
|
# Unlike for most functions, map is faster than a genexpr over `len`
|
|
|
|
max_len = max(map(len, x), default=0)
|
|
|
|
|
|
|
|
padded_x = np.full((len(x), max_len), pad, dtype=dtype)
|
2024-05-31 13:14:50 +08:00
|
|
|
for ind, blocktb in enumerate(x):
|
|
|
|
assert len(blocktb) <= max_len
|
|
|
|
padded_x[ind, :len(blocktb)] = blocktb
|
2024-07-20 12:17:24 +08:00
|
|
|
|
|
|
|
return padded_x
|
|
|
|
|
|
|
|
|
|
|
|
def make_tensor_with_pad(
|
|
|
|
x: List[List[T]],
|
|
|
|
pad: T,
|
|
|
|
dtype: torch.dtype,
|
|
|
|
*,
|
|
|
|
max_len: Optional[int] = None,
|
|
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
|
|
pin_memory: bool = False,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Make a padded tensor from 2D inputs.
|
|
|
|
|
|
|
|
The padding is applied to the end of each inner list until it reaches
|
|
|
|
`max_len`.
|
|
|
|
"""
|
|
|
|
np_dtype = TORCH_DTYPE_TO_NUMPY_DTYPE[dtype]
|
|
|
|
padded_x = make_ndarray_with_pad(x, pad, np_dtype, max_len=max_len)
|
|
|
|
|
|
|
|
tensor = torch.from_numpy(padded_x).to(device)
|
|
|
|
if pin_memory:
|
|
|
|
tensor = tensor.pin_memory()
|
|
|
|
|
|
|
|
return tensor
|
2024-03-21 18:22:17 -07:00
|
|
|
|
|
|
|
|
|
|
|
def async_tensor_h2d(
|
|
|
|
data: list,
|
|
|
|
dtype: torch.dtype,
|
|
|
|
target_device: Union[str, torch.device],
|
|
|
|
pin_memory: bool,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
"""Asynchronously create a tensor and copy it from host to device."""
|
|
|
|
t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu")
|
|
|
|
return t.to(device=target_device, non_blocking=True)
|
|
|
|
|
|
|
|
|
2024-06-12 11:53:03 -07:00
|
|
|
def get_dtype_size(dtype: torch.dtype) -> int:
|
|
|
|
"""Get the size of the data type in bytes."""
|
|
|
|
return torch.tensor([], dtype=dtype).element_size()
|
|
|
|
|
|
|
|
|
2024-08-09 10:39:41 +08:00
|
|
|
# `collections` helpers
|
|
|
|
def is_list_of(
|
|
|
|
value: object,
|
|
|
|
typ: Type[T],
|
|
|
|
*,
|
|
|
|
check: Literal["first", "all"] = "first",
|
|
|
|
) -> TypeIs[List[T]]:
|
|
|
|
if not isinstance(value, list):
|
|
|
|
return False
|
|
|
|
|
|
|
|
if check == "first":
|
|
|
|
return len(value) == 0 or isinstance(value[0], typ)
|
|
|
|
elif check == "all":
|
|
|
|
return all(isinstance(v, typ) for v in value)
|
|
|
|
|
|
|
|
assert_never(check)
|
|
|
|
|
|
|
|
|
2024-07-31 10:38:45 +08:00
|
|
|
JSONTree = Union[Dict[str, "JSONTree[T]"], List["JSONTree[T]"],
|
|
|
|
Tuple["JSONTree[T]", ...], T]
|
|
|
|
"""A nested JSON structure where the leaves need not be JSON-serializable."""
|
|
|
|
|
|
|
|
|
|
|
|
@overload
|
|
|
|
def json_map_leaves(
|
|
|
|
func: Callable[[T], U],
|
|
|
|
value: Dict[str, JSONTree[T]],
|
|
|
|
) -> Dict[str, JSONTree[U]]:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
@overload
|
|
|
|
def json_map_leaves(
|
|
|
|
func: Callable[[T], U],
|
|
|
|
value: List[JSONTree[T]],
|
|
|
|
) -> List[JSONTree[U]]:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
@overload
|
|
|
|
def json_map_leaves(
|
|
|
|
func: Callable[[T], U],
|
|
|
|
value: Tuple[JSONTree[T], ...],
|
|
|
|
) -> Tuple[JSONTree[U], ...]:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
@overload
|
|
|
|
def json_map_leaves(
|
|
|
|
func: Callable[[T], U],
|
|
|
|
value: JSONTree[T],
|
|
|
|
) -> JSONTree[U]:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
def json_map_leaves(func: Callable[[T], U], value: JSONTree[T]) -> JSONTree[U]:
|
|
|
|
if isinstance(value, dict):
|
|
|
|
return {k: json_map_leaves(func, v) for k, v in value.items()}
|
|
|
|
elif isinstance(value, list):
|
|
|
|
return [json_map_leaves(func, v) for v in value]
|
|
|
|
elif isinstance(value, tuple):
|
|
|
|
return tuple(json_map_leaves(func, v) for v in value)
|
|
|
|
else:
|
|
|
|
return func(value)
|
|
|
|
|
|
|
|
|
2024-07-22 17:45:24 -07:00
|
|
|
def flatten_2d_lists(lists: List[List[T]]) -> List[T]:
|
|
|
|
"""Flatten a list of lists to a single list."""
|
|
|
|
return [item for sublist in lists for item in sublist]
|
|
|
|
|
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
def init_cached_hf_modules() -> None:
|
2024-04-17 01:34:33 -07:00
|
|
|
"""
|
|
|
|
Lazy initialization of the Hugging Face modules.
|
|
|
|
"""
|
|
|
|
from transformers.dynamic_module_utils import init_hf_modules
|
|
|
|
init_hf_modules()
|
2024-04-17 22:28:52 -07:00
|
|
|
|
|
|
|
|
2024-04-22 17:21:48 -07:00
|
|
|
@lru_cache(maxsize=None)
|
|
|
|
def find_library(lib_name: str) -> str:
|
|
|
|
"""
|
|
|
|
Find the library file in the system.
|
|
|
|
`lib_name` is full filename, with both prefix and suffix.
|
|
|
|
This function resolves `lib_name` to the full path of the library.
|
|
|
|
"""
|
|
|
|
# Adapted from https://github.com/openai/triton/blob/main/third_party/nvidia/backend/driver.py#L19 # noqa
|
|
|
|
# According to https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
|
|
|
|
# `/sbin/ldconfig` should exist in all Linux systems.
|
|
|
|
# `/sbin/ldconfig` searches the library in the system
|
|
|
|
libs = subprocess.check_output(["/sbin/ldconfig", "-p"]).decode()
|
|
|
|
# each line looks like the following:
|
|
|
|
# libcuda.so.1 (libc6,x86-64) => /lib/x86_64-linux-gnu/libcuda.so.1
|
|
|
|
locs = [line.split()[-1] for line in libs.splitlines() if lib_name in line]
|
|
|
|
# `LD_LIBRARY_PATH` searches the library in the user-defined paths
|
2024-05-02 11:13:25 -07:00
|
|
|
env_ld_library_path = envs.LD_LIBRARY_PATH
|
2024-04-22 17:21:48 -07:00
|
|
|
if not locs and env_ld_library_path:
|
|
|
|
locs = [
|
|
|
|
os.path.join(dir, lib_name)
|
|
|
|
for dir in env_ld_library_path.split(":")
|
|
|
|
if os.path.exists(os.path.join(dir, lib_name))
|
|
|
|
]
|
|
|
|
if not locs:
|
|
|
|
raise ValueError(f"Cannot find {lib_name} in the system.")
|
|
|
|
return locs[0]
|
|
|
|
|
|
|
|
|
2024-06-15 12:45:31 +08:00
|
|
|
def find_nccl_library() -> str:
|
2024-05-28 22:13:52 -07:00
|
|
|
"""
|
|
|
|
We either use the library file specified by the `VLLM_NCCL_SO_PATH`
|
|
|
|
environment variable, or we find the library file brought by PyTorch.
|
|
|
|
After importing `torch`, `libnccl.so.2` or `librccl.so.1` can be
|
|
|
|
found by `ctypes` automatically.
|
|
|
|
"""
|
2024-05-02 11:13:25 -07:00
|
|
|
so_file = envs.VLLM_NCCL_SO_PATH
|
2024-04-17 22:28:52 -07:00
|
|
|
|
|
|
|
# manually load the nccl library
|
|
|
|
if so_file:
|
|
|
|
logger.info(
|
2024-04-26 16:16:58 +09:00
|
|
|
"Found nccl from environment variable VLLM_NCCL_SO_PATH=%s",
|
|
|
|
so_file)
|
2024-04-17 22:28:52 -07:00
|
|
|
else:
|
|
|
|
if torch.version.cuda is not None:
|
2024-05-28 22:13:52 -07:00
|
|
|
so_file = "libnccl.so.2"
|
2024-04-17 22:28:52 -07:00
|
|
|
elif torch.version.hip is not None:
|
2024-05-28 22:13:52 -07:00
|
|
|
so_file = "librccl.so.1"
|
2024-04-17 22:28:52 -07:00
|
|
|
else:
|
|
|
|
raise ValueError("NCCL only supports CUDA and ROCm backends.")
|
2024-04-26 16:16:58 +09:00
|
|
|
logger.info("Found nccl from library %s", so_file)
|
2024-04-17 22:28:52 -07:00
|
|
|
return so_file
|
2024-04-25 16:45:12 -07:00
|
|
|
|
|
|
|
|
|
|
|
def enable_trace_function_call_for_thread() -> None:
|
|
|
|
"""Set up function tracing for the current thread,
|
|
|
|
if enabled via the VLLM_TRACE_FUNCTION environment variable
|
|
|
|
"""
|
|
|
|
|
2024-05-02 11:13:25 -07:00
|
|
|
if envs.VLLM_TRACE_FUNCTION:
|
2024-04-25 16:45:12 -07:00
|
|
|
tmp_dir = tempfile.gettempdir()
|
|
|
|
filename = (f"VLLM_TRACE_FUNCTION_for_process_{os.getpid()}"
|
|
|
|
f"_thread_{threading.get_ident()}_"
|
|
|
|
f"at_{datetime.datetime.now()}.log").replace(" ", "_")
|
|
|
|
log_path = os.path.join(tmp_dir, "vllm", get_vllm_instance_id(),
|
|
|
|
filename)
|
|
|
|
os.makedirs(os.path.dirname(log_path), exist_ok=True)
|
|
|
|
enable_trace_function_call(log_path)
|
2024-05-29 04:29:31 +08:00
|
|
|
|
|
|
|
|
2024-08-09 10:39:41 +08:00
|
|
|
# `functools` helpers
|
2024-05-29 04:29:31 +08:00
|
|
|
def identity(value: T) -> T:
|
|
|
|
return value
|
|
|
|
|
|
|
|
|
|
|
|
F = TypeVar('F', bound=Callable[..., Any])
|
|
|
|
|
|
|
|
|
|
|
|
def deprecate_kwargs(
|
|
|
|
*kws: str,
|
|
|
|
is_deprecated: Union[bool, Callable[[], bool]] = True,
|
|
|
|
additional_message: Optional[str] = None) -> Callable[[F], F]:
|
|
|
|
deprecated_kws = set(kws)
|
|
|
|
|
|
|
|
if not callable(is_deprecated):
|
|
|
|
is_deprecated = partial(identity, is_deprecated)
|
|
|
|
|
|
|
|
def wrapper(fn: F) -> F:
|
|
|
|
|
|
|
|
@wraps(fn)
|
|
|
|
def inner(*args, **kwargs):
|
|
|
|
if is_deprecated():
|
|
|
|
deprecated_kwargs = kwargs.keys() & deprecated_kws
|
|
|
|
if deprecated_kwargs:
|
|
|
|
msg = (
|
|
|
|
f"The keyword arguments {deprecated_kwargs} are "
|
|
|
|
"deprecated and will be removed in a future update.")
|
|
|
|
if additional_message is not None:
|
|
|
|
msg += f" {additional_message}"
|
|
|
|
|
|
|
|
warnings.warn(
|
|
|
|
DeprecationWarning(msg),
|
|
|
|
stacklevel=3, # The inner function takes up one level
|
|
|
|
)
|
|
|
|
|
|
|
|
return fn(*args, **kwargs)
|
|
|
|
|
|
|
|
return inner # type: ignore
|
|
|
|
|
|
|
|
return wrapper
|
2024-06-13 16:06:49 -07:00
|
|
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=8)
|
|
|
|
def _cuda_device_count_stateless(
|
|
|
|
cuda_visible_devices: Optional[str] = None) -> int:
|
|
|
|
# Note: cuda_visible_devices is not used, but we keep it as an argument for
|
|
|
|
# LRU Cache purposes.
|
|
|
|
|
|
|
|
# Code below is based on
|
|
|
|
# https://github.com/pytorch/pytorch/blob/
|
|
|
|
# c1cd946818442aca8c7f812b16d187ce1586c3bc/
|
|
|
|
# torch/cuda/__init__.py#L831C1-L831C17
|
|
|
|
import torch.cuda
|
|
|
|
import torch.version
|
|
|
|
|
|
|
|
if not torch.cuda._is_compiled():
|
|
|
|
return 0
|
2024-06-25 17:56:15 -05:00
|
|
|
if is_hip():
|
|
|
|
# ROCm uses amdsmi instead of nvml for stateless device count
|
|
|
|
# This requires a sufficiently modern version of Torch 2.4.0
|
|
|
|
raw_count = torch.cuda._device_count_amdsmi() if (hasattr(
|
|
|
|
torch.cuda, "_device_count_amdsmi")) else -1
|
|
|
|
else:
|
|
|
|
raw_count = torch.cuda._device_count_nvml()
|
|
|
|
r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count
|
2024-06-13 16:06:49 -07:00
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
def cuda_device_count_stateless() -> int:
|
|
|
|
"""Get number of CUDA devices, caching based on the value of
|
|
|
|
CUDA_VISIBLE_DEVICES at the time of call.
|
2024-09-16 20:04:48 -07:00
|
|
|
|
2024-06-13 16:06:49 -07:00
|
|
|
This should be used instead of torch.cuda.device_count()
|
|
|
|
unless CUDA_VISIBLE_DEVICES has already been set to the desired
|
|
|
|
value."""
|
|
|
|
|
|
|
|
# This can be removed and simply replaced with torch.cuda.get_device_count
|
|
|
|
# after https://github.com/pytorch/pytorch/pull/122815 is released.
|
|
|
|
return _cuda_device_count_stateless(envs.CUDA_VISIBLE_DEVICES)
|
2024-06-18 19:17:03 +03:00
|
|
|
|
|
|
|
|
2024-09-16 17:33:46 +01:00
|
|
|
def weak_bind(bound_method: Callable[..., Any], ) -> Callable[..., None]:
|
|
|
|
"""Make an instance method that weakly references
|
|
|
|
its associated instance and no-ops once that
|
|
|
|
instance is collected."""
|
|
|
|
ref = weakref.ref(bound_method.__self__) # type: ignore[attr-defined]
|
|
|
|
unbound = bound_method.__func__ # type: ignore[attr-defined]
|
|
|
|
|
|
|
|
def weak_bound(*args, **kwargs) -> None:
|
|
|
|
if inst := ref():
|
|
|
|
unbound(inst, *args, **kwargs)
|
|
|
|
|
|
|
|
return weak_bound
|
|
|
|
|
|
|
|
|
2024-06-18 19:17:03 +03:00
|
|
|
#From: https://stackoverflow.com/a/4104188/2749989
|
2024-08-13 09:20:20 +08:00
|
|
|
def run_once(f: Callable[P, None]) -> Callable[P, None]:
|
2024-06-18 19:17:03 +03:00
|
|
|
|
2024-08-13 09:20:20 +08:00
|
|
|
def wrapper(*args: P.args, **kwargs: P.kwargs) -> None:
|
2024-06-18 19:17:03 +03:00
|
|
|
if not wrapper.has_run: # type: ignore[attr-defined]
|
|
|
|
wrapper.has_run = True # type: ignore[attr-defined]
|
|
|
|
return f(*args, **kwargs)
|
|
|
|
|
|
|
|
wrapper.has_run = False # type: ignore[attr-defined]
|
|
|
|
return wrapper
|
2024-06-20 19:00:13 -04:00
|
|
|
|
|
|
|
|
|
|
|
class FlexibleArgumentParser(argparse.ArgumentParser):
|
|
|
|
"""ArgumentParser that allows both underscore and dash in names."""
|
|
|
|
|
|
|
|
def parse_args(self, args=None, namespace=None):
|
|
|
|
if args is None:
|
|
|
|
args = sys.argv[1:]
|
|
|
|
|
2024-08-30 08:21:02 -07:00
|
|
|
if '--config' in args:
|
|
|
|
args = FlexibleArgumentParser._pull_args_from_config(args)
|
|
|
|
|
2024-06-20 19:00:13 -04:00
|
|
|
# Convert underscores to dashes and vice versa in argument names
|
|
|
|
processed_args = []
|
|
|
|
for arg in args:
|
|
|
|
if arg.startswith('--'):
|
2024-06-24 16:01:19 -07:00
|
|
|
if '=' in arg:
|
|
|
|
key, value = arg.split('=', 1)
|
|
|
|
key = '--' + key[len('--'):].replace('_', '-')
|
|
|
|
processed_args.append(f'{key}={value}')
|
|
|
|
else:
|
|
|
|
processed_args.append('--' +
|
|
|
|
arg[len('--'):].replace('_', '-'))
|
2024-06-20 19:00:13 -04:00
|
|
|
else:
|
|
|
|
processed_args.append(arg)
|
|
|
|
|
|
|
|
return super().parse_args(processed_args, namespace)
|
2024-07-18 19:15:52 -07:00
|
|
|
|
2024-08-30 08:21:02 -07:00
|
|
|
@staticmethod
|
|
|
|
def _pull_args_from_config(args: List[str]) -> List[str]:
|
|
|
|
"""Method to pull arguments specified in the config file
|
|
|
|
into the command-line args variable.
|
2024-09-16 20:04:48 -07:00
|
|
|
|
|
|
|
The arguments in config file will be inserted between
|
2024-08-30 08:21:02 -07:00
|
|
|
the argument list.
|
2024-09-16 20:04:48 -07:00
|
|
|
|
2024-08-30 08:21:02 -07:00
|
|
|
example:
|
|
|
|
```yaml
|
|
|
|
port: 12323
|
|
|
|
tensor-parallel-size: 4
|
|
|
|
```
|
|
|
|
```python
|
|
|
|
$: vllm {serve,chat,complete} "facebook/opt-12B" \
|
|
|
|
--config config.yaml -tp 2
|
|
|
|
$: args = [
|
|
|
|
"serve,chat,complete",
|
2024-09-16 20:04:48 -07:00
|
|
|
"facebook/opt-12B",
|
|
|
|
'--config', 'config.yaml',
|
2024-08-30 08:21:02 -07:00
|
|
|
'-tp', '2'
|
|
|
|
]
|
|
|
|
$: args = [
|
|
|
|
"serve,chat,complete",
|
2024-09-16 20:04:48 -07:00
|
|
|
"facebook/opt-12B",
|
|
|
|
'--port', '12323',
|
|
|
|
'--tensor-parallel-size', '4',
|
2024-08-30 08:21:02 -07:00
|
|
|
'-tp', '2'
|
|
|
|
]
|
|
|
|
```
|
|
|
|
|
|
|
|
Please note how the config args are inserted after the sub command.
|
2024-09-16 20:04:48 -07:00
|
|
|
this way the order of priorities is maintained when these are args
|
2024-08-30 08:21:02 -07:00
|
|
|
parsed by super().
|
|
|
|
"""
|
|
|
|
assert args.count(
|
|
|
|
'--config') <= 1, "More than one config file specified!"
|
|
|
|
|
|
|
|
index = args.index('--config')
|
|
|
|
if index == len(args) - 1:
|
|
|
|
raise ValueError("No config file specified! \
|
|
|
|
Please check your command-line arguments.")
|
|
|
|
|
|
|
|
file_path = args[index + 1]
|
|
|
|
|
|
|
|
config_args = FlexibleArgumentParser._load_config_file(file_path)
|
|
|
|
|
|
|
|
# 0th index is for {serve,chat,complete}
|
|
|
|
# followed by config args
|
|
|
|
# followed by rest of cli args.
|
|
|
|
# maintaining this order will enforce the precedence
|
|
|
|
# of cli > config > defaults
|
|
|
|
args = [args[0]] + config_args + args[1:index] + args[index + 2:]
|
|
|
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _load_config_file(file_path: str) -> List[str]:
|
2024-09-16 20:04:48 -07:00
|
|
|
"""Loads a yaml file and returns the key value pairs as a
|
2024-08-30 08:21:02 -07:00
|
|
|
flattened list with argparse like pattern
|
|
|
|
```yaml
|
|
|
|
port: 12323
|
|
|
|
tensor-parallel-size: 4
|
|
|
|
```
|
|
|
|
returns:
|
|
|
|
processed_args: list[str] = [
|
|
|
|
'--port': '12323',
|
|
|
|
'--tensor-parallel-size': '4'
|
|
|
|
]
|
2024-09-16 20:04:48 -07:00
|
|
|
|
2024-08-30 08:21:02 -07:00
|
|
|
"""
|
|
|
|
|
|
|
|
extension: str = file_path.split('.')[-1]
|
|
|
|
if extension not in ('yaml', 'yml'):
|
|
|
|
raise ValueError(
|
|
|
|
"Config file must be of a yaml/yml type.\
|
|
|
|
%s supplied", extension)
|
|
|
|
|
|
|
|
# only expecting a flat dictionary of atomic types
|
|
|
|
processed_args: List[str] = []
|
|
|
|
|
|
|
|
config: Dict[str, Union[int, str]] = {}
|
|
|
|
try:
|
|
|
|
with open(file_path, 'r') as config_file:
|
|
|
|
config = yaml.safe_load(config_file)
|
|
|
|
except Exception as ex:
|
|
|
|
logger.error(
|
|
|
|
"Unable to read the config file at %s. \
|
|
|
|
Make sure path is correct", file_path)
|
|
|
|
raise ex
|
|
|
|
|
|
|
|
for key, value in config.items():
|
|
|
|
processed_args.append('--' + key)
|
|
|
|
processed_args.append(str(value))
|
|
|
|
|
|
|
|
return processed_args
|
|
|
|
|
2024-07-18 19:15:52 -07:00
|
|
|
|
|
|
|
async def _run_task_with_lock(task: Callable, lock: asyncio.Lock, *args,
|
|
|
|
**kwargs):
|
|
|
|
"""Utility function to run async task in a lock"""
|
|
|
|
async with lock:
|
|
|
|
return await task(*args, **kwargs)
|
2024-08-27 23:13:45 -04:00
|
|
|
|
|
|
|
|
2024-09-23 01:44:48 -06:00
|
|
|
def get_allowed_kwarg_only_overrides(
|
|
|
|
callable: Callable[..., object],
|
|
|
|
overrides: Optional[Dict[str, Any]],
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
"""
|
|
|
|
Given a callable which has one or more keyword only params and a dict
|
|
|
|
mapping param names to values, drop values that can be not be kwarg
|
|
|
|
expanded to overwrite one or more keyword-only args. This is used in a
|
|
|
|
few places to handle custom processor overrides for multimodal models,
|
|
|
|
e.g., for profiling when processor options provided by the user
|
|
|
|
may affect the number of mm tokens per instance.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
callable: Callable which takes 0 or more keyword only arguments.
|
|
|
|
overrides: Potential overrides to be used when invoking the callable.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Dictionary containing the kwargs to be leveraged which may be used
|
|
|
|
to overwrite one or more keyword only arguments when invoking the
|
|
|
|
callable.
|
|
|
|
"""
|
|
|
|
if not overrides:
|
|
|
|
return {}
|
|
|
|
|
|
|
|
allowed_override_names = [
|
|
|
|
name for name, param in inspect.signature(callable).parameters.items()
|
|
|
|
if param.kind == inspect.Parameter.KEYWORD_ONLY
|
|
|
|
]
|
|
|
|
|
|
|
|
# Drop any mm_processor_kwargs provided by the user that are
|
|
|
|
# not kwarg names accepted by the provided input processor.
|
|
|
|
filtered_overrides = {
|
|
|
|
kwarg_name: val
|
|
|
|
for kwarg_name, val in overrides.items()
|
|
|
|
if kwarg_name in allowed_override_names
|
|
|
|
}
|
|
|
|
|
|
|
|
# If anything is dropped, log a warning
|
|
|
|
dropped_keys = overrides.keys() - filtered_overrides.keys()
|
|
|
|
if dropped_keys:
|
|
|
|
logger.warning(
|
|
|
|
"The following intended overrides are not keyword-only args "
|
|
|
|
"and and will be dropped: %s", dropped_keys)
|
|
|
|
|
|
|
|
return filtered_overrides
|
|
|
|
|
|
|
|
|
2024-08-27 23:13:45 -04:00
|
|
|
# Using dynamo with vLLM doesn't really work well with PyTorch versions < 2.4.0.
|
|
|
|
# In particular, the FakeScalarType is not supported for earlier versions of
|
|
|
|
# PyTorch which breaks dynamo for any ops registered using ScalarType.
|
|
|
|
def supports_dynamo() -> bool:
|
|
|
|
base_torch_version = Version(Version(torch.__version__).base_version)
|
|
|
|
return base_torch_version >= Version("2.4.0")
|
2024-09-05 18:10:33 -07:00
|
|
|
|
|
|
|
|
2024-09-21 10:03:55 +08:00
|
|
|
# Some backends use pytorch version < 2.4.0 which doesn't
|
|
|
|
# support `torch.library.custom_op`.
|
|
|
|
def supports_custom_op() -> bool:
|
|
|
|
return hasattr(torch.library, "custom_op")
|
|
|
|
|
|
|
|
|
2024-09-05 18:10:33 -07:00
|
|
|
class AtomicCounter:
|
|
|
|
"""An atomic, thread-safe counter"""
|
|
|
|
|
|
|
|
def __init__(self, initial=0):
|
|
|
|
"""Initialize a new atomic counter to given initial value"""
|
|
|
|
self._value = initial
|
|
|
|
self._lock = threading.Lock()
|
|
|
|
|
|
|
|
def inc(self, num=1):
|
|
|
|
"""Atomically increment the counter by num and return the new value"""
|
|
|
|
with self._lock:
|
|
|
|
self._value += num
|
|
|
|
return self._value
|
|
|
|
|
|
|
|
def dec(self, num=1):
|
|
|
|
"""Atomically decrement the counter by num and return the new value"""
|
|
|
|
with self._lock:
|
|
|
|
self._value -= num
|
|
|
|
return self._value
|
|
|
|
|
|
|
|
@property
|
|
|
|
def value(self):
|
|
|
|
return self._value
|