vllm/tests/worker/test_worker.py

44 lines
1.7 KiB
Python
Raw Normal View History

import random
import torch
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.worker.worker import Worker
def test_worker_prepare_inputs_for_prompt():
worker = Worker(None, None, None)
worker.block_size = 16
batch_size = random.randint(1, 256)
prompt_lens = []
seq_group_metadata_list = []
for i in range(batch_size):
# make sure all tokens fit into one block
prompt_len = i % (worker.block_size - 1) + 1
prompt_lens.append(prompt_len)
seq_data = list(range(prompt_len))
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData(seq_data)},
sampling_params=SamplingParams(temperature=0),
block_tables={0: [1]},
))
expected_selected_token_indices = []
selected_token_start_idx = 0
max_seq_len = max(prompt_lens)
for prompt_len in prompt_lens:
expected_selected_token_indices.append(selected_token_start_idx +
prompt_len - 1)
selected_token_start_idx += max_seq_len
input_tokens, input_positions, input_metadata = worker._prepare_inputs(
seq_group_metadata_list)
assert input_tokens.shape == input_positions.shape == (batch_size,
max_seq_len)
torch.testing.assert_close(input_tokens, input_positions)
actual = input_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)