44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
![]() |
import random
|
||
|
import torch
|
||
|
|
||
|
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
|
||
|
from vllm.worker.worker import Worker
|
||
|
|
||
|
|
||
|
def test_worker_prepare_inputs_for_prompt():
|
||
|
worker = Worker(None, None, None)
|
||
|
worker.block_size = 16
|
||
|
batch_size = random.randint(1, 256)
|
||
|
prompt_lens = []
|
||
|
seq_group_metadata_list = []
|
||
|
for i in range(batch_size):
|
||
|
# make sure all tokens fit into one block
|
||
|
prompt_len = i % (worker.block_size - 1) + 1
|
||
|
prompt_lens.append(prompt_len)
|
||
|
seq_data = list(range(prompt_len))
|
||
|
seq_group_metadata_list.append(
|
||
|
SequenceGroupMetadata(
|
||
|
request_id=f"test_{i}",
|
||
|
is_prompt=True,
|
||
|
seq_data={0: SequenceData(seq_data)},
|
||
|
sampling_params=SamplingParams(temperature=0),
|
||
|
block_tables={0: [1]},
|
||
|
))
|
||
|
expected_selected_token_indices = []
|
||
|
selected_token_start_idx = 0
|
||
|
max_seq_len = max(prompt_lens)
|
||
|
for prompt_len in prompt_lens:
|
||
|
expected_selected_token_indices.append(selected_token_start_idx +
|
||
|
prompt_len - 1)
|
||
|
selected_token_start_idx += max_seq_len
|
||
|
input_tokens, input_positions, input_metadata = worker._prepare_inputs(
|
||
|
seq_group_metadata_list)
|
||
|
assert input_tokens.shape == input_positions.shape == (batch_size,
|
||
|
max_seq_len)
|
||
|
torch.testing.assert_close(input_tokens, input_positions)
|
||
|
actual = input_metadata.selected_token_indices
|
||
|
expected = torch.tensor(expected_selected_token_indices,
|
||
|
device=actual.device,
|
||
|
dtype=actual.dtype)
|
||
|
torch.testing.assert_close(actual, expected)
|