96 lines
2.7 KiB
Python
96 lines
2.7 KiB
Python
![]() |
from typing import List
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import vllm
|
||
|
from vllm.assets.image import ImageAsset
|
||
|
from vllm.lora.request import LoRARequest
|
||
|
|
||
|
from ..utils import multi_gpu_test
|
||
|
|
||
|
MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"
|
||
|
|
||
|
PROMPT_TEMPLATE = (
|
||
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
|
||
|
"(<image>./</image>)\nWhat is in the image?<|eot_id|>"
|
||
|
"<|start_header_id|>assistant<|end_header_id|>\n\n")
|
||
|
|
||
|
IMAGE_ASSETS = [
|
||
|
ImageAsset("stop_sign"),
|
||
|
ImageAsset("cherry_blossom"),
|
||
|
]
|
||
|
|
||
|
# After fine-tuning with LoRA, all generated content should start begin `A`.
|
||
|
EXPECTED_OUTPUT = [
|
||
|
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
|
||
|
"A pink cherry blossom tree with a blue sky in the background.",
|
||
|
]
|
||
|
|
||
|
|
||
|
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||
|
sampling_params = vllm.SamplingParams(
|
||
|
temperature=0,
|
||
|
max_tokens=5,
|
||
|
stop_token_ids=[128001, 128009], # eos_id, eot_id
|
||
|
)
|
||
|
|
||
|
inputs = [{
|
||
|
"prompt": PROMPT_TEMPLATE,
|
||
|
"multi_modal_data": {
|
||
|
"image": asset.pil_image
|
||
|
},
|
||
|
} for asset in IMAGE_ASSETS]
|
||
|
|
||
|
outputs = llm.generate(
|
||
|
inputs,
|
||
|
sampling_params,
|
||
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||
|
if lora_id else None,
|
||
|
)
|
||
|
# Print the outputs.
|
||
|
generated_texts: List[str] = []
|
||
|
for output in outputs:
|
||
|
prompt = output.prompt
|
||
|
generated_text = output.outputs[0].text.strip()
|
||
|
generated_texts.append(generated_text)
|
||
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||
|
return generated_texts
|
||
|
|
||
|
|
||
|
@multi_gpu_test(num_gpus=2)
|
||
|
@pytest.mark.parametrize("fully_sharded", [True, False])
|
||
|
def test_minicpmv_tp2(minicpmv_lora_files, fully_sharded):
|
||
|
llm = vllm.LLM(
|
||
|
MODEL_PATH,
|
||
|
enable_lora=True,
|
||
|
max_num_seqs=2,
|
||
|
max_loras=4,
|
||
|
max_lora_rank=64,
|
||
|
tensor_parallel_size=2,
|
||
|
trust_remote_code=True,
|
||
|
fully_sharded_loras=fully_sharded,
|
||
|
)
|
||
|
|
||
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
||
|
|
||
|
for i in range(len(EXPECTED_OUTPUT)):
|
||
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|
||
|
|
||
|
|
||
|
@multi_gpu_test(num_gpus=4)
|
||
|
@pytest.mark.parametrize("fully_sharded", [True, False])
|
||
|
def test_minicpmv_tp4(minicpmv_lora_files, fully_sharded):
|
||
|
llm = vllm.LLM(
|
||
|
MODEL_PATH,
|
||
|
enable_lora=True,
|
||
|
max_num_seqs=2,
|
||
|
max_loras=4,
|
||
|
max_lora_rank=64,
|
||
|
tensor_parallel_size=4,
|
||
|
trust_remote_code=True,
|
||
|
fully_sharded_loras=fully_sharded,
|
||
|
)
|
||
|
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
|
||
|
for i in range(len(EXPECTED_OUTPUT)):
|
||
|
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
|