vllm/vllm/executor/multiproc_gpu_executor.py

141 lines
5.0 KiB
Python
Raw Normal View History

import asyncio
import os
from functools import partial
from typing import Any, Dict, Optional, Tuple
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
DistributedGPUExecutor, DistributedGPUExecutorAsync)
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
from vllm.logger import init_logger
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
get_vllm_instance_id, make_async)
logger = init_logger(__name__)
class MultiprocessingGPUExecutor(DistributedGPUExecutor):
"""Python multiprocessing-based multi-GPU executor"""
def _init_executor(self) -> None:
assert (
not self.speculative_config
), "Speculative decoding not yet supported for MultiProcGPU backend."
# Create the parallel GPU workers.
world_size = self.parallel_config.tensor_parallel_size
# Set CUDA_VISIBLE_DEVICES for the driver, inherited by workers
if "CUDA_VISIBLE_DEVICES" not in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = (",".join(
map(str, range(world_size))))
# Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers
os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id()
from torch.cuda import device_count
assert world_size <= device_count(), (
"please set tensor_parallel_size to less than max local gpu count")
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
if world_size == 1:
self.workers = []
else:
result_handler = ResultHandler()
self.workers = [
ProcessWorkerWrapper(
result_handler,
partial(
self._create_worker,
rank=rank,
local_rank=rank,
distributed_init_method=distributed_init_method,
)) for rank in range(1, world_size)
]
self.worker_monitor = WorkerMonitor(self.workers, result_handler)
result_handler.start()
self.worker_monitor.start()
self.driver_worker = self._create_worker(
distributed_init_method=distributed_init_method)
self._run_workers("init_device")
self._run_workers("load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
def shutdown(self):
if (worker_monitor := getattr(self, "worker_monitor",
None)) is not None:
worker_monitor.close()
def _run_workers(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
if max_concurrent_workers:
raise NotImplementedError(
"max_concurrent_workers is not supported yet.")
# Start the workers first.
worker_outputs = [
worker.execute_method(method, *args, **kwargs)
for worker in self.workers
]
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
# Start the driver worker after all the ray workers.
driver_worker_method = getattr(self.driver_worker, method)
driver_worker_output = driver_worker_method(*driver_args,
**driver_kwargs)
# Get the results of the workers.
return [driver_worker_output
] + [output.get() for output in worker_outputs]
def check_health(self) -> None:
"""Raises an error if engine is unhealthy."""
if not self.worker_monitor.is_alive():
raise RuntimeError("Worker processes are not running")
class MultiprocessingGPUExecutorAsync(MultiprocessingGPUExecutor,
DistributedGPUExecutorAsync):
async def _run_workers_async(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
driver_executor = make_async(getattr(self.driver_worker, method))
# Run all the workers asynchronously.
coros = [driver_executor(*driver_args, **driver_kwargs)] + [
worker.execute_method_async(method, *args, **kwargs)
for worker in self.workers
]
return await asyncio.gather(*coros)