101 lines
3.7 KiB
Python
Raw Normal View History

from typing import TYPE_CHECKING, Optional
import psutil
import torch
from vllm.logger import init_logger
from .interface import Platform, PlatformEnum, _Backend
logger = init_logger(__name__)
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
class CpuPlatform(Platform):
_enum = PlatformEnum.CPU
device_name: str = "cpu"
device_type: str = "cpu"
dispatch_key: str = "CPU"
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return "cpu"
@classmethod
def get_default_attn_backend(cls, selected_backend: _Backend) -> _Backend:
if selected_backend != _Backend.TORCH_SDPA:
logger.info("Cannot use %s backend on CPU.", selected_backend)
return _Backend.TORCH_SDPA
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
return psutil.virtual_memory().total
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return False
@classmethod
def inference_mode(cls):
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
import vllm.envs as envs
from vllm.utils import GiB_bytes
model_config = vllm_config.model_config
# Reminder: Please update docs/source/usage/compatibility_matrix.rst
# If the feature combo become valid
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
model_config.enforce_eager = True
cache_config = vllm_config.cache_config
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0:
cache_config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
cache_config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore # noqa
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
scheduler_config = vllm_config.scheduler_config
if ((scheduler_config.chunked_prefill_enabled
or cache_config.enable_prefix_caching)
and model_config.dtype == torch.half):
logger.warning("Chunked-prefill on the CPU backend only does not"
" support fp16 for now, cast to bf16.")
model_config.dtype = torch.bfloat16
parallel_config = vllm_config.parallel_config
if (parallel_config.distributed_executor_backend is not None
and parallel_config.distributed_executor_backend != "mp"):
logger.warning(("%s is not supported on CPU, fallback to mp "
"distributed executor backend."),
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "mp"
if parallel_config.worker_cls == "auto":
if vllm_config.speculative_config:
parallel_config.worker_cls = \
"vllm.spec_decode.spec_decode_worker.create_spec_worker"
parallel_config.sd_worker_cls = \
"vllm.worker.cpu_worker.CPUWorker"
else:
parallel_config.worker_cls = "vllm.worker.cpu_worker.CPUWorker"