47 lines
1.5 KiB
Python
47 lines
1.5 KiB
Python
![]() |
import vllm
|
||
|
from vllm.lora.request import LoRARequest
|
||
|
|
||
|
MODEL_PATH = "google/gemma-7b"
|
||
|
|
||
|
|
||
|
def do_sample(llm, lora_path: str, lora_id: int) -> str:
|
||
|
prompts = [
|
||
|
"Quote: Imagination is",
|
||
|
"Quote: Be yourself;",
|
||
|
"Quote: So many books,",
|
||
|
]
|
||
|
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
|
||
|
outputs = llm.generate(
|
||
|
prompts,
|
||
|
sampling_params,
|
||
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||
|
if lora_id else None)
|
||
|
# Print the outputs.
|
||
|
generated_texts = []
|
||
|
for output in outputs:
|
||
|
prompt = output.prompt
|
||
|
generated_text = output.outputs[0].text.strip()
|
||
|
generated_texts.append(generated_text)
|
||
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||
|
return generated_texts
|
||
|
|
||
|
|
||
|
def test_gemma_lora(gemma_lora_files):
|
||
|
llm = vllm.LLM(MODEL_PATH,
|
||
|
max_model_len=1024,
|
||
|
enable_lora=True,
|
||
|
max_loras=4)
|
||
|
|
||
|
expected_lora_output = [
|
||
|
"more important than knowledge.\nAuthor: Albert Einstein\n",
|
||
|
"everyone else is already taken.\nAuthor: Oscar Wilde\n",
|
||
|
"so little time\nAuthor: Frank Zappa\n",
|
||
|
]
|
||
|
|
||
|
output1 = do_sample(llm, gemma_lora_files, lora_id=1)
|
||
|
for i in range(len(expected_lora_output)):
|
||
|
assert output1[i].startswith(expected_lora_output[i])
|
||
|
output2 = do_sample(llm, gemma_lora_files, lora_id=2)
|
||
|
for i in range(len(expected_lora_output)):
|
||
|
assert output2[i].startswith(expected_lora_output[i])
|