50 lines
1.3 KiB
Python
50 lines
1.3 KiB
Python
![]() |
"""Compares vllm vs sparseml for compressed-tensors
|
||
|
|
||
|
Note: vllm and sparseml do not have bitwise correctness,
|
||
|
so in this test, we just confirm that the top selected
|
||
|
tokens of the are in the top 5 selections of each other.
|
||
|
"""
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from tests.quantization.utils import is_quant_method_supported
|
||
|
|
||
|
from .utils import check_logprobs_close
|
||
|
|
||
|
MODELS = [
|
||
|
"nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test",
|
||
|
]
|
||
|
|
||
|
MAX_TOKENS = 32
|
||
|
NUM_LOGPROBS = 5
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not is_quant_method_supported("compressed-tensors"),
|
||
|
reason="compressed-tensors is not supported on this machine type.")
|
||
|
@pytest.mark.parametrize("model_name", MODELS)
|
||
|
def test_models(
|
||
|
vllm_runner,
|
||
|
hf_runner,
|
||
|
example_prompts,
|
||
|
model_name,
|
||
|
) -> None:
|
||
|
# Run sparseml.
|
||
|
with hf_runner(model_name=model_name,
|
||
|
is_sparseml_model=True) as sparseml_model:
|
||
|
|
||
|
sparseml_outputs = sparseml_model.generate_greedy_logprobs_limit(
|
||
|
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
|
||
|
|
||
|
# Run vllm.
|
||
|
with vllm_runner(model_name=model_name) as vllm_model:
|
||
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
||
|
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
|
||
|
|
||
|
check_logprobs_close(
|
||
|
outputs_0_lst=sparseml_outputs,
|
||
|
outputs_1_lst=vllm_outputs,
|
||
|
name_0="sparseml",
|
||
|
name_1="vllm",
|
||
|
)
|