vllm/vllm/attention/backends/flash_attn.py

277 lines
11 KiB
Python
Raw Normal View History

"""Attention layer with Flash and PagedAttention.
NOTE(woosuk): At the moment, this file includes a lot of duplicated code from
XFormers backend. The duplicated code will be removed once we use flash-attn or
flashinfer for all the attention operations.
"""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Type
import torch
from vllm_flash_attn import flash_attn_varlen_func
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata,
AttentionMetadataPerStage)
from vllm.attention.ops.paged_attn import (PagedAttention,
PagedAttentionMetadata)
class FlashAttentionBackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "flash-attn"
@staticmethod
def get_impl_cls() -> Type["FlashAttentionImpl"]:
return FlashAttentionImpl
@staticmethod
def make_metadata(*args, **kwargs) -> "FlashAttentionMetadata":
return FlashAttentionMetadata(*args, **kwargs)
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
PagedAttention.copy_blocks(kv_caches, src_to_dists)
@dataclass
class FlashAttentionMetadata(AttentionMetadataPerStage,
PagedAttentionMetadata):
"""Metadata for FlashAttentionBackend.
NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
# (batch_size,). The sequence length per sequence. Sequence length means
# the computed tokens + new tokens None if it is a decoding.
seq_lens: Optional[List[int]]
# seq_lens stored as a tensor.
seq_lens_tensor: Optional[torch.Tensor]
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ----------------------|
# |-- query_len ---|
# Maximum query length in the batch.
max_query_len: Optional[int]
# Maximum sequence length in the batch.
max_seq_len: Optional[int]
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
subquery_start_loc: Optional[torch.Tensor]
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor]
# (batch_size,) A tensor of context lengths (tokens that are computed
# so far).
context_lens_tensor: Optional[torch.Tensor]
# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool
class FlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prefill_tokens ----------------->|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
Otherwise, the layout is as follows:
|<----------------- num_decode_tokens ------------------>|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
If chunked prefill is enabled, prefill tokens and decode tokens can be
batched together in a flattened 1D query.
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
padding between prefill and decode tokens.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
kv_cache_dtype: str = "auto",
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = ((sliding_window, sliding_window)
if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
if head_size not in suppored_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {suppored_head_sizes}.")
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata[FlashAttentionMetadata],
kv_scale: float = 1.0,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if kv_cache is not None:
key_cache, value_cache = PagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
PagedAttention.write_to_paged_cache(key, value, key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype, kv_scale)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
# normal attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
out = flash_attn_varlen_func(
q=query,
k=key,
v=value,
cu_seqlens_q=prefill_meta.seq_start_loc,
cu_seqlens_k=prefill_meta.seq_start_loc,
max_seqlen_q=prefill_meta.max_seq_len,
max_seqlen_k=prefill_meta.max_seq_len,
softmax_scale=self.scale,
causal=True,
window_size=self.sliding_window,
alibi_slopes=self.alibi_slopes,
)
assert output[:num_prefill_tokens].shape == out.shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
# TODO(Hai) this triton kernel has regression issue (broke) to
# deal with different data types between KV and FP8 KV cache,
# to be addressed separately.
output[:num_prefill_tokens] = PagedAttention.forward_prefix(
query,
key,
value,
key_cache,
value_cache,
prefill_meta.block_tables,
prefill_meta.subquery_start_loc,
prefill_meta.seq_lens_tensor,
prefill_meta.context_lens_tensor,
prefill_meta.max_query_len,
self.alibi_slopes,
self.sliding_window[0],
)
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
output[num_prefill_tokens:] = PagedAttention.forward_decode(
decode_query,
key_cache,
value_cache,
decode_meta.block_tables,
decode_meta.seq_lens_tensor,
decode_meta.max_seq_len,
self.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)