vllm/vllm/executor/multiproc_gpu_executor.py

159 lines
5.8 KiB
Python
Raw Normal View History

import asyncio
import os
from functools import partial
from typing import Any, List, Optional
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
DistributedGPUExecutor, DistributedGPUExecutorAsync)
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
from vllm.logger import init_logger
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
get_vllm_instance_id, make_async)
logger = init_logger(__name__)
class MultiprocessingGPUExecutor(DistributedGPUExecutor):
"""Python multiprocessing-based multi-GPU executor"""
def _init_executor(self) -> None:
assert (
not self.speculative_config
), "Speculative decoding not yet supported for MultiProcGPU backend."
# Create the parallel GPU workers.
world_size = self.parallel_config.tensor_parallel_size
# Set CUDA_VISIBLE_DEVICES for the driver, inherited by workers
if "CUDA_VISIBLE_DEVICES" not in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = (",".join(
map(str, range(world_size))))
# Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers
os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id()
# Disable torch async compiling which won't work with daemonic processes
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
from torch.cuda import device_count
assert world_size <= device_count(), (
"please set tensor_parallel_size to less than max local gpu count")
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
if world_size == 1:
self.workers = []
else:
result_handler = ResultHandler()
self.workers = [
ProcessWorkerWrapper(
result_handler,
partial(
self._create_worker,
rank=rank,
local_rank=rank,
distributed_init_method=distributed_init_method,
)) for rank in range(1, world_size)
]
self.worker_monitor = WorkerMonitor(self.workers, result_handler)
result_handler.start()
self.worker_monitor.start()
self.driver_worker = self._create_worker(
distributed_init_method=distributed_init_method)
self._run_workers("init_device")
self._run_workers("load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
def shutdown(self):
if (worker_monitor := getattr(self, "worker_monitor",
None)) is not None:
worker_monitor.close()
def _driver_execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
return self.driver_worker.execute_model(
execute_model_req=execute_model_req)
def _run_workers(
self,
method: str,
*args,
async_run_remote_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers.
Args:
async_run_remote_workers_only: If True the method will be run only
in the remote workers, not the driver worker. It will also be
run asynchronously and return a list of futures rather than
blocking on the results.
"""
if max_concurrent_workers:
raise NotImplementedError(
"max_concurrent_workers is not supported yet.")
# Start the workers first.
worker_outputs = [
worker.execute_method(method, *args, **kwargs)
for worker in self.workers
]
if async_run_remote_workers_only:
# Just return futures
return worker_outputs
driver_worker_method = getattr(self.driver_worker, method)
driver_worker_output = driver_worker_method(*args, **kwargs)
# Get the results of the workers.
return [driver_worker_output
] + [output.get() for output in worker_outputs]
def check_health(self) -> None:
"""Raises an error if engine is unhealthy."""
if not self.worker_monitor.is_alive():
raise RuntimeError("Worker processes are not running")
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
for result in parallel_worker_tasks:
result.get()
class MultiprocessingGPUExecutorAsync(MultiprocessingGPUExecutor,
DistributedGPUExecutorAsync):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.driver_exec_model = make_async(self.driver_worker.execute_model)
async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
return await self.driver_exec_model(execute_model_req)
async def _start_worker_execution_loop(self):
coros = [
worker.execute_method_async("start_worker_execution_loop")
for worker in self.workers
]
return await asyncio.gather(*coros)