vllm/cacheflow/models/utils.py

119 lines
4.2 KiB
Python
Raw Normal View History

import os
import glob
import json
import filelock
from typing import Union, Optional
import numpy as np
import torch
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank)
_STR_DTYPE_TO_TORCH_DTYPE = {
'half': torch.half,
'float': torch.float,
'float16': torch.float16,
'float32': torch.float32,
2023-05-03 14:09:44 -07:00
'bfloat16': torch.bfloat16,
}
def get_torch_dtype(dtype: Union[torch.dtype, str]) -> torch.dtype:
if isinstance(dtype, str):
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype.lower()]
else:
torch_dtype = dtype
return torch_dtype
def get_dtype_size(dtype: Union[torch.dtype, str]) -> int:
torch_dtype = get_torch_dtype(dtype)
return torch.tensor([], dtype=torch_dtype).element_size()
class Disabledtqdm(tqdm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, disable=True)
def hf_model_weights_iterator(model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
# Prepare file lock directory to prevent multiple processes from
# downloading the same model weights at the same time.
lock_dir = cache_dir if cache_dir is not None else "/tmp"
lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))
# Download model weights from huggingface.
is_local = os.path.isdir(model_name_or_path)
if not is_local:
with lock:
hf_folder = snapshot_download(model_name_or_path,
allow_patterns="*.bin",
cache_dir=cache_dir,
tqdm_class=Disabledtqdm)
else:
hf_folder = model_name_or_path
hf_bin_files = glob.glob(os.path.join(hf_folder, "*.bin"))
if use_np_cache:
# Convert the model weights from torch tensors to numpy arrays for
# faster loading.
np_folder = os.path.join(hf_folder, 'np')
os.makedirs(np_folder, exist_ok=True)
weight_names_file = os.path.join(np_folder, 'weight_names.json')
with lock:
if not os.path.exists(weight_names_file):
weight_names = []
for bin_file in hf_bin_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
param_path = os.path.join(np_folder, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
weight_names.append(name)
with open(weight_names_file, 'w') as f:
json.dump(weight_names, f)
with open(weight_names_file, 'r') as f:
weight_names = json.load(f)
for name in weight_names:
param_path = os.path.join(np_folder, name)
with open(param_path, "rb") as f:
param = np.load(f)
yield name, torch.from_numpy(param)
else:
for bin_file in hf_bin_files:
state = torch.load(bin_file, map_location="cpu")
for name, param in state.items():
yield name, param
def load_tensor_parallel_weights(param, loaded_weight, param_name,
column_parallel_weight_names,
row_parallel_weight_names):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
for p in column_parallel_weight_names:
if p in param_name:
shard_size = param.shape[0]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
for p in row_parallel_weight_names:
if p in param_name:
shard_size = param.shape[1]
loaded_weight = loaded_weight[
:,
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)