vllm/cacheflow/models/gpt_neox.py

235 lines
9.9 KiB
Python
Raw Normal View History

"""1D GPT-NeoX model compatible with HuggingFace weights."""
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from cacheflow.models import InputMetadata
from cacheflow.models.attention import GPTNeoXCacheFlowAttention
from cacheflow.models.sample import Sampler
from cacheflow.models.utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTNeoXAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.query_key_value = ColumnParallelLinear(config.hidden_size,
3 * config.hidden_size,
gather_output=False,
perform_initialization=False)
self.dense = RowParallelLinear(config.hidden_size, config.hidden_size,
input_is_parallel=True,
perform_initialization=False)
scaling = self.head_size ** -0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
self.attn = GPTNeoXCacheFlowAttention(scaling, rotary_dim)
def forward(
self,
position_ids: torch.LongTensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(
position_ids, q, k, v, k_cache, v_cache, input_metadata, cache_event)
output, _ = self.dense(attn_output)
return output
class GPTNeoXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
config.intermediate_size,
gather_output=False,
perform_initialization=False)
self.dense_4h_to_h = RowParallelLinear(config.intermediate_size, config.hidden_size,
input_is_parallel=True,
perform_initialization=False)
if config.hidden_act != 'gelu':
raise ValueError(f'Unsupported activation: {config.hidden_act}. '
'Only gelu is supported for now.')
self.act = torch.nn.GELU()
def forward(self, hidden_states):
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states
class GPTNeoXLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = GPTNeoXAttention(config)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
position_ids: torch.LongTensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
attn_input = self.input_layernorm(hidden_states)
attn_output = self.attention(
position_ids=position_ids,
hidden_states=attn_input,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_input = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_input = self.post_attention_layernorm(attn_output)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output
return hidden_states
class GPTNeoXModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_in = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
perform_initialization=False)
self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.LongTensor,
position_ids: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_in(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class GPTNeoXForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = ColumnParallelLinear(config.hidden_size, config.vocab_size,
bias=False, gather_output=False,
perform_initialization=False)
2023-05-04 02:59:56 -07:00
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
hidden_states = self.gpt_neox(
input_ids, positions, kv_caches, input_metadata, cache_events)
next_tokens = self.sampler(
self.embed_out.weight, hidden_states, input_metadata)
return next_tokens
_column_parallel_weights = ["embed_in.weight", "embed_out.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"]
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
def load_weights(self, model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, use_np_cache):
if ("attention.bias" in name or "attention.masked_bias" in name
or "rotary_emb.inv_freq" in name):
continue
param = state_dict[name]
if "query_key_value" in name:
# NOTE(woosuk): GPT-NeoX's fused QKV has the shape of
2023-05-04 02:59:56 -07:00
# [num_heads * 3 * head_size, hidden_size], while the
# required shape is [3 * num_heads * head_size, hidden_size].
# Thus, we need weight conversion.
shard_size = param.shape[0]
loaded_weight = loaded_weight[shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // num_heads
if 'query_key_value.weight' in name:
loaded_weight = loaded_weight.view(-1, 3, head_size, hidden_size)
loaded_weight = loaded_weight.transpose(0, 1)
2023-05-04 02:59:56 -07:00
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif 'query_key_value.bias' in name:
loaded_weight = loaded_weight.view(-1, 3, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
2023-05-04 02:59:56 -07:00
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected weight name: {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights)
def initialize_dummy_weights(self) -> None:
for param in self.state_dict().values():
param.data.uniform_(-1e-3, 1e-3)