2024-05-23 17:29:18 -04:00
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
2024-06-09 16:23:30 -04:00
|
|
|
#include <torch/all.h>
|
2024-05-23 17:29:18 -04:00
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
#include "../../dispatch_utils.h"
|
2024-08-21 20:18:00 -04:00
|
|
|
|
|
|
|
#ifndef USE_ROCM
|
|
|
|
#include <cub/util_type.cuh>
|
|
|
|
#include <cub/cub.cuh>
|
|
|
|
#else
|
|
|
|
#include <hipcub/util_type.hpp>
|
|
|
|
#include <hipcub/hipcub.hpp>
|
|
|
|
#endif
|
2024-05-23 17:29:18 -04:00
|
|
|
|
|
|
|
static inline __device__ int8_t float_to_int8_rn(float x) {
|
|
|
|
#ifdef USE_ROCM
|
2024-09-16 14:52:40 -04:00
|
|
|
static constexpr auto i8_min =
|
2024-05-23 17:29:18 -04:00
|
|
|
static_cast<float>(std::numeric_limits<int8_t>::min());
|
2024-09-16 14:52:40 -04:00
|
|
|
static constexpr auto i8_max =
|
2024-05-23 17:29:18 -04:00
|
|
|
static_cast<float>(std::numeric_limits<int8_t>::max());
|
2024-09-16 14:52:40 -04:00
|
|
|
|
|
|
|
// To match the rounding mode of CUDA, we use nearbyint.
|
|
|
|
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
|
|
|
|
// If that changes in the future, we may need to set the rounding mode
|
|
|
|
// explicitly, either at runtime or compile time.
|
2024-05-23 17:29:18 -04:00
|
|
|
float dst = std::nearbyint(x);
|
2024-09-16 14:52:40 -04:00
|
|
|
|
2024-05-23 17:29:18 -04:00
|
|
|
// saturate
|
|
|
|
dst = std::clamp(dst, i8_min, i8_max);
|
|
|
|
return static_cast<int8_t>(dst);
|
|
|
|
#else
|
|
|
|
// CUDA path
|
|
|
|
uint32_t dst;
|
|
|
|
asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(dst) : "f"(x));
|
|
|
|
return reinterpret_cast<const int8_t&>(dst);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2024-09-16 14:52:40 -04:00
|
|
|
static inline __device__ int32_t float_to_int32_rn(float x) {
|
|
|
|
#ifdef USE_ROCM
|
|
|
|
// int32_max is not exactly representable as float.
|
|
|
|
// Therefore, we need to be careful and manually return int32_max on overflow.
|
|
|
|
// For symmetry, we also do the same for int32_min, even though it is exactly
|
|
|
|
// representable as float and the conversion should be exact.
|
|
|
|
static constexpr auto i32_min = std::numeric_limits<int32_t>::min();
|
|
|
|
static constexpr auto i32_min_f = static_cast<float>(i32_min);
|
|
|
|
static constexpr auto i32_max = std::numeric_limits<int32_t>::max();
|
|
|
|
static constexpr auto i32_max_f = static_cast<float>(i32_max);
|
|
|
|
|
|
|
|
// To match the rounding mode of CUDA, we use nearbyint.
|
|
|
|
// It uses the current rounding mode, which is always FE_TONEAREST on HIP.
|
|
|
|
// If that changes in the future, we may need to set the rounding mode
|
|
|
|
// explicitly, either at runtime or compile time.
|
|
|
|
float dst = std::nearbyint(x);
|
|
|
|
|
|
|
|
// saturate on the higher end.
|
|
|
|
if (dst >= i32_max_f) {
|
|
|
|
return i32_max;
|
|
|
|
}
|
|
|
|
// saturate on the lower end.
|
|
|
|
if (dst <= i32_min_f) {
|
|
|
|
return i32_min;
|
|
|
|
}
|
|
|
|
|
|
|
|
return static_cast<int32_t>(dst);
|
|
|
|
#else
|
|
|
|
// CUDA path
|
|
|
|
uint32_t dst;
|
|
|
|
asm volatile("cvt.rni.sat.s32.f32 %0, %1;" : "=r"(dst) : "f"(x));
|
|
|
|
return reinterpret_cast<const int32_t&>(dst);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline __device__ int8_t int32_to_int8(int32_t x) {
|
|
|
|
#ifdef USE_ROCM
|
|
|
|
static constexpr auto i8_min =
|
|
|
|
static_cast<int32_t>(std::numeric_limits<int8_t>::min());
|
|
|
|
static constexpr auto i8_max =
|
|
|
|
static_cast<int32_t>(std::numeric_limits<int8_t>::max());
|
|
|
|
|
|
|
|
// saturate
|
|
|
|
int32_t dst = std::clamp(x, i8_min, i8_max);
|
|
|
|
return static_cast<int8_t>(dst);
|
|
|
|
#else
|
|
|
|
// CUDA path
|
|
|
|
uint32_t dst;
|
|
|
|
asm volatile("cvt.sat.s8.s32 %0, %1;" : "=r"(dst) : "r"(x));
|
|
|
|
return reinterpret_cast<const int8_t&>(dst);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2024-05-23 17:29:18 -04:00
|
|
|
namespace vllm {
|
|
|
|
|
|
|
|
template <typename scalar_t, typename scale_type>
|
|
|
|
__global__ void static_scaled_int8_quant_kernel(
|
2024-06-07 12:36:26 -04:00
|
|
|
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
|
|
|
|
scale_type const* scale_ptr, const int hidden_size) {
|
|
|
|
int const tid = threadIdx.x;
|
|
|
|
int const token_idx = blockIdx.x;
|
|
|
|
scale_type const scale = *scale_ptr;
|
2024-05-23 17:29:18 -04:00
|
|
|
|
|
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
2024-06-07 12:36:26 -04:00
|
|
|
out[token_idx * hidden_size + i] = float_to_int8_rn(
|
|
|
|
static_cast<float>(input[token_idx * hidden_size + i]) / scale);
|
2024-05-23 17:29:18 -04:00
|
|
|
}
|
|
|
|
}
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-09-16 14:52:40 -04:00
|
|
|
template <typename scalar_t, typename scale_type, typename azp_type>
|
|
|
|
__global__ void static_scaled_int8_azp_quant_kernel(
|
|
|
|
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
|
|
|
|
scale_type const* scale_ptr, azp_type const* azp_ptr,
|
|
|
|
const int hidden_size) {
|
|
|
|
int const tid = threadIdx.x;
|
|
|
|
int const token_idx = blockIdx.x;
|
|
|
|
scale_type const scale = *scale_ptr;
|
|
|
|
azp_type const azp = *azp_ptr;
|
|
|
|
|
|
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
|
|
|
auto const val = static_cast<float>(input[token_idx * hidden_size + i]);
|
|
|
|
auto const quant_val = int32_to_int8(float_to_int32_rn(val / scale) + azp);
|
|
|
|
out[token_idx * hidden_size + i] = quant_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
template <typename scalar_t, typename scale_type>
|
|
|
|
__global__ void dynamic_scaled_int8_quant_kernel(
|
|
|
|
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
|
|
|
|
scale_type* scale, const int hidden_size) {
|
|
|
|
int const tid = threadIdx.x;
|
|
|
|
int const token_idx = blockIdx.x;
|
|
|
|
float absmax_val = 0.0f;
|
|
|
|
float const zero = 0.0f;
|
|
|
|
|
|
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
|
|
|
float val = static_cast<float>(input[token_idx * hidden_size + i]);
|
|
|
|
val = val > zero ? val : -val;
|
|
|
|
absmax_val = val > absmax_val ? val : absmax_val;
|
|
|
|
}
|
|
|
|
|
2024-08-21 20:18:00 -04:00
|
|
|
using BlockReduce = cub::BlockReduce<float, 1024>;
|
|
|
|
__shared__ typename BlockReduce::TempStorage reduceStorage;
|
|
|
|
float const block_absmax_val_maybe =
|
|
|
|
BlockReduce(reduceStorage).Reduce(absmax_val, cub::Max{}, blockDim.x);
|
2024-06-07 12:36:26 -04:00
|
|
|
__shared__ float block_absmax_val;
|
|
|
|
if (tid == 0) {
|
|
|
|
block_absmax_val = block_absmax_val_maybe;
|
|
|
|
scale[token_idx] = block_absmax_val / 127.0f;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float const tmp_scale = 127.0f / block_absmax_val;
|
|
|
|
for (int i = tid; i < hidden_size; i += blockDim.x) {
|
|
|
|
out[token_idx * hidden_size + i] = float_to_int8_rn(
|
|
|
|
static_cast<float>(input[token_idx * hidden_size + i]) * tmp_scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-09-16 14:52:40 -04:00
|
|
|
template <typename scalar_t, typename scale_type, typename azp_type>
|
|
|
|
__global__ void dynamic_scaled_int8_azp_quant_kernel(
|
|
|
|
scalar_t const* __restrict__ input, int8_t* __restrict__ out,
|
|
|
|
scale_type* scale, azp_type* azp, const int hidden_size) {
|
|
|
|
int const token_idx = blockIdx.x;
|
|
|
|
|
|
|
|
// Scan for the min and max value for this token
|
|
|
|
float max_val = std::numeric_limits<float>::min();
|
|
|
|
float min_val = std::numeric_limits<float>::max();
|
|
|
|
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
|
|
|
|
auto val = static_cast<float>(input[token_idx * hidden_size + i]);
|
|
|
|
max_val = std::max(max_val, val);
|
|
|
|
min_val = std::min(min_val, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reduce the max and min values across the block
|
|
|
|
using BlockReduce = cub::BlockReduce<float, 1024>;
|
|
|
|
__shared__ typename BlockReduce::TempStorage reduceStorage;
|
|
|
|
max_val = BlockReduce(reduceStorage).Reduce(max_val, cub::Max{}, blockDim.x);
|
|
|
|
__syncthreads(); // Make sure min doesn't mess with max shared memory
|
|
|
|
min_val = BlockReduce(reduceStorage).Reduce(min_val, cub::Min{}, blockDim.x);
|
|
|
|
|
|
|
|
__shared__ scale_type scale_sh;
|
|
|
|
__shared__ azp_type azp_sh;
|
|
|
|
|
|
|
|
// Compute the scale and zero point and store them, only on the first thread
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
float const scale_val = (max_val - min_val) / 255.0f;
|
|
|
|
// Use rounding to even (same as torch.round)
|
|
|
|
auto const azp_float = std::nearbyint(-128.0f - min_val / scale_val);
|
|
|
|
auto const azp_val = static_cast<azp_type>(azp_float);
|
|
|
|
|
|
|
|
// Store the scale and azp into shared and global
|
|
|
|
scale[token_idx] = scale_sh = scale_val;
|
|
|
|
azp[token_idx] = azp_sh = azp_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait for the scale and azp to be computed
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float const scale_val = scale_sh;
|
|
|
|
azp_type const azp_val = azp_sh;
|
|
|
|
|
|
|
|
// Quantize the values
|
|
|
|
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
|
|
|
|
auto const val = static_cast<float>(input[token_idx * hidden_size + i]);
|
|
|
|
auto const quant_val =
|
|
|
|
int32_to_int8(float_to_int32_rn(val / scale_val) + azp_val);
|
|
|
|
out[token_idx * hidden_size + i] = quant_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-05-23 17:29:18 -04:00
|
|
|
} // namespace vllm
|
|
|
|
|
2024-06-03 12:52:30 -04:00
|
|
|
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
|
|
|
|
torch::Tensor const& input, // [..., hidden_size]
|
2024-09-16 14:52:40 -04:00
|
|
|
torch::Tensor const& scale,
|
|
|
|
c10::optional<torch::Tensor> const& azp) {
|
2024-05-23 17:29:18 -04:00
|
|
|
TORCH_CHECK(input.is_contiguous());
|
|
|
|
TORCH_CHECK(out.is_contiguous());
|
2024-06-03 12:52:30 -04:00
|
|
|
TORCH_CHECK(scale.numel() == 1);
|
2024-09-16 14:52:40 -04:00
|
|
|
TORCH_CHECK(!azp || azp->numel() == 1);
|
2024-06-03 12:52:30 -04:00
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
int const hidden_size = input.size(-1);
|
|
|
|
int const num_tokens = input.numel() / hidden_size;
|
|
|
|
dim3 const grid(num_tokens);
|
|
|
|
dim3 const block(std::min(hidden_size, 1024));
|
2024-05-23 17:29:18 -04:00
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
VLLM_DISPATCH_FLOATING_TYPES(
|
|
|
|
input.scalar_type(), "static_scaled_int8_quant_kernel", [&] {
|
2024-09-16 14:52:40 -04:00
|
|
|
if (!azp) {
|
|
|
|
vllm::static_scaled_int8_quant_kernel<scalar_t, float>
|
|
|
|
<<<grid, block, 0, stream>>>(
|
|
|
|
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
|
|
|
scale.data_ptr<float>(), hidden_size);
|
|
|
|
} else {
|
|
|
|
vllm::static_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
|
|
|
|
<<<grid, block, 0, stream>>>(
|
|
|
|
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
|
|
|
scale.data_ptr<float>(), azp->data_ptr<int32_t>(),
|
|
|
|
hidden_size);
|
|
|
|
}
|
2024-05-23 17:29:18 -04:00
|
|
|
});
|
|
|
|
}
|
2024-06-07 12:36:26 -04:00
|
|
|
|
|
|
|
void dynamic_scaled_int8_quant(
|
|
|
|
torch::Tensor& out, // [..., hidden_size]
|
|
|
|
torch::Tensor const& input, // [..., hidden_size]
|
2024-09-16 14:52:40 -04:00
|
|
|
torch::Tensor& scales, c10::optional<torch::Tensor> const& azp) {
|
2024-06-07 12:36:26 -04:00
|
|
|
TORCH_CHECK(input.is_contiguous());
|
|
|
|
TORCH_CHECK(out.is_contiguous());
|
2024-09-16 14:52:40 -04:00
|
|
|
TORCH_CHECK(scales.is_contiguous());
|
|
|
|
TORCH_CHECK(!azp || azp->is_contiguous());
|
2024-06-07 12:36:26 -04:00
|
|
|
|
|
|
|
int const hidden_size = input.size(-1);
|
|
|
|
int const num_tokens = input.numel() / hidden_size;
|
|
|
|
dim3 const grid(num_tokens);
|
|
|
|
dim3 const block(std::min(hidden_size, 1024));
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
VLLM_DISPATCH_FLOATING_TYPES(
|
|
|
|
input.scalar_type(), "dynamic_scaled_int8_quant_kernel", [&] {
|
2024-09-16 14:52:40 -04:00
|
|
|
if (!azp) {
|
|
|
|
vllm::dynamic_scaled_int8_quant_kernel<scalar_t, float>
|
|
|
|
<<<grid, block, 0, stream>>>(
|
|
|
|
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
|
|
|
scales.data_ptr<float>(), hidden_size);
|
|
|
|
} else {
|
|
|
|
vllm::dynamic_scaled_int8_azp_quant_kernel<scalar_t, float, int32_t>
|
|
|
|
<<<grid, block, 0, stream>>>(
|
|
|
|
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
|
|
|
|
scales.data_ptr<float>(), azp->data_ptr<int32_t>(),
|
|
|
|
hidden_size);
|
|
|
|
}
|
2024-06-07 12:36:26 -04:00
|
|
|
});
|
|
|
|
}
|