vllm/cacheflow/worker/worker.py

170 lines
6.3 KiB
Python
Raw Normal View History

2023-02-22 19:01:38 +00:00
from typing import Dict, List, Tuple
import torch
from cacheflow.models import get_model
from cacheflow.models import InputMetadata
from cacheflow.worker.cache_engine import CacheEngine
class Worker:
def __init__(
self,
worker_id: int,
gpu_id: int,
model_name: str,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
) -> None:
self.worker_id = worker_id
self.gpu_id = gpu_id
self.block_size = block_size
self.device = torch.device('cuda', index=gpu_id)
# Initialize the model.
# FIXME(woosuk): This is a hack.
self.model = get_model(model_name).to(device=gpu_id)
self.num_layers = self.model.config.num_hidden_layers
self.num_heads = self.model.config.num_attention_heads
self.head_size = self.model.config.hidden_size // self.num_heads
self.dtype = self.model.dtype
self.cache_engine = CacheEngine(
worker_id=worker_id,
gpu_id=gpu_id,
num_layers=self.num_layers,
num_heads=self.num_heads,
head_size=self.head_size,
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
dtype=self.dtype,
)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
def prepare_inputs(
self,
prompt_tokens: Dict[int, List[int]], # Seq id -> List of input token ids.
generation_tokens: Dict[int, int], # Seq id -> Input token id.
context_lens: Dict[int, int], # Seq id -> Number of tokens participating in attention.
block_tables: Dict[int, List[int]], # Seq id -> List of physical block numbers.
) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
# TODO(woosuk): Support interactive generation.
# Add the prompt tokens.
prompt_lens: List[int] = []
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
prompt_seq_ids = sorted(prompt_tokens.keys())
for seq_id in prompt_seq_ids:
prompt_len = len(prompt_tokens[seq_id])
prompt_lens.append(prompt_len)
input_tokens.extend(prompt_tokens[seq_id])
input_positions.extend(range(len(prompt_tokens[seq_id])))
block_table = block_tables[seq_id]
for i in range(prompt_len):
block_number = block_table[i // self.block_size]
block_offset = i % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
# Add the generation tokens.
max_context_len = 0
max_num_blocks_per_seq = 0
generation_block_tables: List[List[int]] = []
generation_seq_ids = sorted(generation_tokens.keys())
for seq_id in generation_seq_ids:
input_tokens.append(generation_tokens[seq_id])
input_positions.append(context_lens[seq_id] - 1)
generation_block_tables.append(block_tables[seq_id])
max_context_len = max(max_context_len, context_lens[seq_id])
max_num_blocks_per_seq = max(
max_num_blocks_per_seq, len(block_tables[seq_id]))
# Optimization: Pad the input length to be a multiple of 8.
# This is required for utilizing the Tensor Cores in NVIDIA GPUs.
input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
input_positions = _pad_to_alignment(input_positions, multiple_of=8)
# Convert to tensors.
tokens_tensor = torch.tensor(
input_tokens, dtype=torch.long, device=self.device)
positions_tensor = torch.tensor(
input_positions, dtype=torch.long, device=self.device)
slot_mapping_tensor = torch.tensor(
slot_mapping, dtype=torch.int, device=self.device)
context_lens_tensor = torch.tensor(
[context_lens[seq_id] for seq_id in generation_seq_ids],
dtype=torch.int, device=self.device)
block_tables_tensor = torch.tensor(
[_pad_to_max(block_table) for block_table in generation_block_tables],
dtype=int, device=self.device)
input_metadata = InputMetadata(
prompt_lens=prompt_lens,
slot_mapping=slot_mapping_tensor,
context_lens=context_lens_tensor,
max_context_len=max_context_len,
block_tables=block_tables_tensor,
)
return tokens_tensor, positions_tensor, input_metadata
@torch.inference_mode()
def execute_stage(
self,
prompt_tokens: Dict[int, List[int]], # Seq id -> List of input token ids.
generation_tokens: Dict[int, int], # Seq id -> Input token id.
context_lens: Dict[int, int], # Seq id -> Number of tokens participating in attention.
block_tables: Dict[int, List[int]], # Seq id -> List of physical block numbers.
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, int],
) -> torch.Tensor:
# Issue cache operations.
command_issued = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
command_issued = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
command_issued = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
command_issued = True
if command_issued:
cache_events = self.cache_events
else:
cache_events = None
# Prepare input tensors.
input_tokens, input_positions, input_metadata = self.prepare_inputs(
prompt_tokens, generation_tokens, context_lens, block_tables)
# Execute the model.
output = self.model(
input_ids=input_tokens,
positions=input_positions,
input_metadata=input_metadata,
cache_events=cache_events,
)
return output
def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
return x + [0] * ((-len(x)) % multiple_of)
def _pad_to_max(x: List[int], max_len: int) -> List[int]:
return x + [0] * (max_len - len(x))