2023-05-20 13:06:59 -07:00
|
|
|
import asyncio
|
|
|
|
import time
|
2023-05-23 21:39:50 -07:00
|
|
|
from typing import Dict, Optional
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
import ray
|
|
|
|
|
|
|
|
from cacheflow.outputs import RequestOutput
|
|
|
|
from cacheflow.sampling_params import SamplingParams
|
2023-05-21 17:04:18 -07:00
|
|
|
from cacheflow.server.arg_utils import ServerArgs
|
2023-05-20 13:06:59 -07:00
|
|
|
from cacheflow.server.llm_server import LLMServer
|
|
|
|
from cacheflow.server.ray_utils import initialize_cluster
|
2023-05-23 21:39:50 -07:00
|
|
|
from cacheflow.utils import random_uuid
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
TIMEOUT_TO_PREVENT_DEADLOCK = 1 # seconds
|
|
|
|
|
|
|
|
|
2023-05-23 21:39:50 -07:00
|
|
|
class AsyncLLMServer:
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
def __init__(self, server_use_ray: bool, *args, **kwargs) -> None:
|
|
|
|
if server_use_ray:
|
|
|
|
remote_server_class = ray.remote(num_cpus=0)(LLMServer)
|
|
|
|
else:
|
|
|
|
remote_server_class = ray.remote(num_gpus=1)(LLMServer)
|
|
|
|
self.server = remote_server_class.remote(*args, **kwargs)
|
|
|
|
|
|
|
|
# Request id -> request output.
|
|
|
|
self.request_outputs: Dict[str, RequestOutput] = {}
|
|
|
|
# Request id -> event to notify that there is new output.
|
|
|
|
self.request_events: Dict[str, asyncio.Event] = {}
|
|
|
|
self.is_server_running = False
|
|
|
|
|
|
|
|
async def server_step(self):
|
|
|
|
self.is_server_running = True
|
|
|
|
request_outputs = await self.server.step.remote()
|
|
|
|
self.is_server_running = False
|
|
|
|
# Notify the waiting coroutines that there are new outputs ready.
|
|
|
|
for request_output in request_outputs:
|
|
|
|
request_id = request_output.request_id
|
|
|
|
self.request_outputs[request_id] = request_output
|
|
|
|
self.request_events[request_id].set()
|
|
|
|
|
2023-05-23 21:39:50 -07:00
|
|
|
async def generate(self, prompt: str, sampling_params: SamplingParams,
|
|
|
|
request_id: Optional[str] = None) -> RequestOutput:
|
2023-05-20 13:06:59 -07:00
|
|
|
# Preprocess the request.
|
|
|
|
arrival_time = time.time()
|
|
|
|
|
|
|
|
# Create an event to notify us that there is new output from the
|
|
|
|
# cacheflow server.
|
2023-05-23 21:39:50 -07:00
|
|
|
if request_id is None:
|
|
|
|
request_id = random_uuid()
|
2023-05-20 13:06:59 -07:00
|
|
|
request_event = asyncio.Event()
|
|
|
|
self.request_events[request_id] = request_event
|
|
|
|
|
|
|
|
# Add the request into the cacheflow server's waiting queue.
|
|
|
|
await self.server.add_request.remote(
|
|
|
|
request_id, prompt, sampling_params, arrival_time=arrival_time)
|
|
|
|
|
|
|
|
# The cacheflow server does not have a background loop that keeps
|
|
|
|
# processing incoming requests. Therefore, we need to keep kicking
|
|
|
|
# the server to process the requests.
|
|
|
|
while True:
|
|
|
|
# Kick the server if the server is not running.
|
|
|
|
if not self.is_server_running:
|
|
|
|
await self.server_step()
|
|
|
|
|
|
|
|
# Wait for new output. The group_event will be set in server_step
|
|
|
|
# when there is new output available for the sequence group.
|
|
|
|
# Added a timeout to prevent deadlock.
|
|
|
|
try:
|
|
|
|
await asyncio.wait_for(request_event.wait(),
|
|
|
|
timeout=TIMEOUT_TO_PREVENT_DEADLOCK)
|
|
|
|
except asyncio.TimeoutError:
|
|
|
|
continue
|
|
|
|
# Reset the event to wait for the next output.
|
|
|
|
request_event.clear()
|
|
|
|
|
|
|
|
# Decode and return new outputs.
|
|
|
|
request_output = self.request_outputs[request_id]
|
2023-05-23 21:39:50 -07:00
|
|
|
yield request_output
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Once finished, release the resources of the sequence group.
|
2023-05-23 21:39:50 -07:00
|
|
|
if request_output.finished():
|
2023-05-20 13:06:59 -07:00
|
|
|
del self.request_outputs[request_id]
|
|
|
|
del self.request_events[request_id]
|
|
|
|
# Kick the server if the server is not running. This is to
|
|
|
|
# prevent that there are still requests in server's waiting
|
|
|
|
# queue to be executed.
|
|
|
|
if not self.is_server_running:
|
|
|
|
await self.server_step()
|
|
|
|
break
|
|
|
|
|
2023-05-23 21:39:50 -07:00
|
|
|
@classmethod
|
|
|
|
def from_server_args(cls, server_args: ServerArgs) -> "AsyncLLMServer":
|
|
|
|
# Create the server configs.
|
|
|
|
server_configs = server_args.create_server_configs()
|
|
|
|
parallel_config = server_configs[2]
|
|
|
|
# Initialize the cluster.
|
|
|
|
distributed_init_method, devices = initialize_cluster(parallel_config)
|
|
|
|
# Create the LLM server.
|
|
|
|
server = cls(server_args.use_ray, *server_configs,
|
|
|
|
distributed_init_method, devices,
|
|
|
|
log_stats=not server_args.disable_log_stats)
|
|
|
|
return server
|