142 lines
5.6 KiB
Python
Raw Normal View History

from typing import List, Optional, Union
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from tqdm import tqdm
from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
from cacheflow.server.arg_utils import ServerArgs
from cacheflow.server.llm_server import LLMServer
from cacheflow.utils import Counter
class LLM:
2023-06-04 12:52:41 -07:00
"""An LLM for generating texts from given prompts and sampling parameters.
This class includes a tokenizer, a language model (possibly distributed
across multiple GPUs), and GPU memory space allocated for intermediate
states (aka KV cache). Given a batch of prompts and sampling parameters,
this class generates texts from the model, using an intelligent batching
mechanism and efficient memory management.
NOTE: This class is intended to be used for offline inference. For online
serving, use the `AsyncLLMServer` class instead.
NOTE: For the comprehensive list of arguments, see `ServerArgs`.
Args:
model: The name or path of a HuggingFace Transformers model.
tensor_parallel_size: The number of GPUs to use for distributed
execution with tensor parallelism.
dtype: The data type for the model weights and activations. Currently,
we support `float16` and `bfloat16`. If `default`, we use the
`torch_dtype` attribute of the model config. If the `torch_dtype`
is `float32`, we use `float16` instead.
seed: The seed to initialize the random number generator for sampling.
"""
def __init__(
self,
model: str,
tensor_parallel_size: int = 1,
dtype: str = "default",
seed: int = 0,
**kwargs,
) -> None:
if "disable_log_stats" not in kwargs:
kwargs["disable_log_stats"] = True
server_args = ServerArgs(
model=model,
tensor_parallel_size=tensor_parallel_size,
dtype=dtype,
seed=seed,
**kwargs,
)
self.llm_server = LLMServer.from_server_args(server_args)
self.request_counter = Counter()
def get_tokenizer(
self,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
return self.llm_server.tokenizer
def generate(
self,
2023-06-04 12:52:41 -07:00
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[SamplingParams] = None,
2023-05-22 17:03:40 -07:00
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = True,
) -> List[RequestOutput]:
2023-06-04 12:52:41 -07:00
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
2023-06-02 22:35:17 -07:00
if isinstance(prompts, str):
2023-06-04 12:52:41 -07:00
# Convert a single prompt to a list.
2023-06-02 22:35:17 -07:00
prompts = [prompts]
2023-06-04 12:52:41 -07:00
if prompts is not None and prompt_token_ids is not None:
if len(prompts) != len(prompt_token_ids):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
2023-05-22 17:03:40 -07:00
# Use default sampling params.
sampling_params = SamplingParams()
2023-06-04 12:52:41 -07:00
# Add requests to the server.
2023-06-04 12:52:41 -07:00
if prompts is not None:
num_requests = len(prompts)
else:
num_requests = len(prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
2023-05-22 17:03:40 -07:00
if prompt_token_ids is None:
token_ids = None
else:
token_ids = prompt_token_ids[i]
self._add_request(prompt, sampling_params, token_ids)
return self._run_server(use_tqdm)
def _add_request(
self,
2023-06-04 12:52:41 -07:00
prompt: Optional[str],
sampling_params: SamplingParams,
prompt_token_ids: Optional[List[int]],
) -> None:
request_id = str(next(self.request_counter))
self.llm_server.add_request(request_id, prompt, sampling_params,
prompt_token_ids)
def _run_server(self, use_tqdm: bool) -> List[RequestOutput]:
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_server.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the server.
outputs: List[RequestOutput] = []
while self.llm_server.has_unfinished_requests():
step_outputs = self.llm_server.step()
for output in step_outputs:
2023-05-25 00:09:07 -07:00
if output.finished():
outputs.append(output)
if use_tqdm:
pbar.update(1)
if use_tqdm:
pbar.close()
return outputs