2024-05-16 00:53:51 -07:00
|
|
|
"""Tests which cover integration of the speculative decoding framework with
|
|
|
|
tensor parallelism.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from vllm.utils import is_hip
|
|
|
|
|
2024-09-11 14:07:34 -07:00
|
|
|
from .conftest import run_equality_correctness_test_tp
|
2024-05-16 00:53:51 -07:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"common_llm_kwargs",
|
2024-09-11 14:07:34 -07:00
|
|
|
[[
|
2024-05-16 00:53:51 -07:00
|
|
|
# Skip cuda graph recording for fast test.
|
2024-09-11 14:07:34 -07:00
|
|
|
"--enforce-eager",
|
|
|
|
"--tensor-parallel-size",
|
|
|
|
"2"
|
|
|
|
]])
|
|
|
|
@pytest.mark.parametrize("per_test_common_llm_kwargs", [[]])
|
|
|
|
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
|
2024-05-16 00:53:51 -07:00
|
|
|
@pytest.mark.parametrize("test_llm_kwargs", [
|
2024-09-11 14:07:34 -07:00
|
|
|
[
|
|
|
|
"--speculative-model",
|
|
|
|
"JackFram/llama-68m",
|
|
|
|
"--num-speculative-tokens",
|
|
|
|
"3",
|
|
|
|
],
|
|
|
|
[
|
|
|
|
"--speculative-model",
|
|
|
|
"[ngram]",
|
|
|
|
"--num-speculative-tokens",
|
|
|
|
"5",
|
|
|
|
"--ngram-prompt-lookup-max",
|
|
|
|
"3",
|
|
|
|
],
|
2024-05-16 00:53:51 -07:00
|
|
|
])
|
|
|
|
@pytest.mark.parametrize("batch_size", [2])
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"output_len",
|
|
|
|
[
|
|
|
|
# Use smaller output len for fast test.
|
|
|
|
32,
|
|
|
|
])
|
|
|
|
@pytest.mark.parametrize("seed", [1])
|
2024-09-11 14:07:34 -07:00
|
|
|
def test_target_model_tp_gt_1(common_llm_kwargs, per_test_common_llm_kwargs,
|
|
|
|
baseline_llm_kwargs, test_llm_kwargs,
|
|
|
|
batch_size: int, output_len: int, seed: int):
|
2024-05-16 00:53:51 -07:00
|
|
|
"""Verify greedy equality when tensor parallelism is used.
|
|
|
|
"""
|
|
|
|
if is_hip():
|
|
|
|
pytest.skip("hip is not well-supported yet")
|
2024-09-11 14:07:34 -07:00
|
|
|
run_equality_correctness_test_tp("JackFram/llama-68m",
|
|
|
|
common_llm_kwargs,
|
|
|
|
per_test_common_llm_kwargs,
|
|
|
|
baseline_llm_kwargs,
|
|
|
|
test_llm_kwargs,
|
|
|
|
batch_size,
|
|
|
|
output_len,
|
|
|
|
seed,
|
|
|
|
temperature=0.0)
|
2024-06-25 18:56:06 +09:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
|
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"common_llm_kwargs",
|
2024-09-11 14:07:34 -07:00
|
|
|
[[
|
2024-06-25 18:56:06 +09:00
|
|
|
# Skip cuda graph recording for fast test.
|
2024-09-11 14:07:34 -07:00
|
|
|
"--enforce-eager",
|
|
|
|
"--tensor_parallel_size",
|
|
|
|
"2",
|
2024-07-19 15:15:22 +02:00
|
|
|
|
|
|
|
# precision
|
2024-09-11 14:07:34 -07:00
|
|
|
"--dtype",
|
|
|
|
"bfloat16",
|
|
|
|
]])
|
|
|
|
@pytest.mark.parametrize("per_test_common_llm_kwargs", [[]])
|
|
|
|
@pytest.mark.parametrize("baseline_llm_kwargs", [[]])
|
|
|
|
@pytest.mark.parametrize("model, test_llm_kwargs",
|
|
|
|
[("JackFram/llama-68m", [
|
|
|
|
"--speculative-model",
|
|
|
|
"JackFram/llama-68m",
|
|
|
|
"--num_speculative-tokens",
|
|
|
|
"5",
|
|
|
|
"--speculative-draft-tensor-parallel-size",
|
|
|
|
"1",
|
|
|
|
]),
|
|
|
|
("ibm-granite/granite-3b-code-instruct", [
|
|
|
|
"--speculative-model",
|
|
|
|
"ibm-granite/granite-3b-code-instruct",
|
|
|
|
"--num_speculative-tokens",
|
|
|
|
"5",
|
|
|
|
"--speculative-draft-tensor-parallel-size",
|
|
|
|
"1",
|
|
|
|
])])
|
2024-06-25 18:56:06 +09:00
|
|
|
@pytest.mark.parametrize("batch_size", [2])
|
|
|
|
@pytest.mark.parametrize("seed", [1])
|
2024-09-11 14:07:34 -07:00
|
|
|
def test_draft_model_tp_lt_target_model_tp2(model, common_llm_kwargs,
|
|
|
|
per_test_common_llm_kwargs,
|
|
|
|
baseline_llm_kwargs,
|
|
|
|
test_llm_kwargs, batch_size: int,
|
|
|
|
seed: int):
|
2024-06-25 18:56:06 +09:00
|
|
|
"""Verify spec decode works well with smaller tp for draft models.
|
|
|
|
"""
|
2024-09-11 14:07:34 -07:00
|
|
|
run_equality_correctness_test_tp(model,
|
|
|
|
common_llm_kwargs,
|
|
|
|
per_test_common_llm_kwargs,
|
|
|
|
baseline_llm_kwargs,
|
|
|
|
test_llm_kwargs,
|
|
|
|
batch_size,
|
|
|
|
max_output_len=32,
|
|
|
|
seed=seed,
|
|
|
|
temperature=0.0)
|