vllm/tests/spec_decode/e2e/test_integration.py

141 lines
5.0 KiB
Python
Raw Normal View History

"""Tests which cover integration of the speculative decoding framework with
other features, e.g. cuda graphs.
"""
import pytest
from .conftest import run_equality_correctness_test
MAIN_MODEL = "JackFram/llama-68m"
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Verify equality when cuda graphs allowed.
"enforce_eager": False,
"model_name": "JackFram/llama-68m",
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
{
# Identical models.
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("output_len", [32])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_cuda_graph(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size: int, output_len: int, seed: int):
"""Verify spec decode equality when cuda graphs are enabled.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model_name": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
{
"speculative_model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
# Explicitly specify draft model quantization
{
"speculative_model_quantization": "gptq",
},
# Explicitly specify GPTQ-based draft model to use marlin quantization
{
"speculative_model_quantization": "marlin",
},
# Not explicitly specify draft model quantization
{
"speculative_model_quantization": None,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize("seed", [1])
def test_speculative_model_quantization_config(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size: int, seed: int):
"""Verify spec decode works well with draft model quantization configs.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=32,
seed=seed,
temperature=0.0)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model_name": MAIN_MODEL,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mqa_scorer(vllm_runner, common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs, batch_size: int,
output_len: int, seed: int):
"""Verify that ngram speculative decoding generates the same output
with batch expansion scorer and mqa scorer.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0)