2023-09-03 21:43:43 -07:00
|
|
|
import time
|
2024-03-22 13:44:12 -07:00
|
|
|
from typing import Iterable, List, Optional, Tuple, Type, Union
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-03-11 10:17:16 +08:00
|
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
|
2024-03-03 00:00:29 -05:00
|
|
|
import vllm
|
2024-03-25 23:59:47 +09:00
|
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoRAConfig, ModelConfig,
|
|
|
|
ParallelConfig, SchedulerConfig)
|
2023-09-03 21:43:43 -07:00
|
|
|
from vllm.core.scheduler import Scheduler, SchedulerOutputs
|
2023-06-17 03:07:40 -07:00
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
2024-01-31 14:58:07 -08:00
|
|
|
from vllm.engine.metrics import StatLogger, Stats
|
2024-03-11 11:03:45 -07:00
|
|
|
from vllm.engine.ray_utils import initialize_ray_cluster
|
2024-03-25 23:59:47 +09:00
|
|
|
from vllm.executor.executor_base import ExecutorBase
|
2023-06-17 03:07:40 -07:00
|
|
|
from vllm.logger import init_logger
|
2024-03-25 23:59:47 +09:00
|
|
|
from vllm.lora.request import LoRARequest
|
2023-06-17 03:07:40 -07:00
|
|
|
from vllm.outputs import RequestOutput
|
|
|
|
from vllm.sampling_params import SamplingParams
|
2024-03-22 13:44:12 -07:00
|
|
|
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
|
2023-12-26 13:41:09 +08:00
|
|
|
SequenceGroupOutput, SequenceOutput, SequenceStatus)
|
2024-03-25 23:59:47 +09:00
|
|
|
from vllm.transformers_utils.detokenizer import Detokenizer
|
2024-03-15 16:37:01 -07:00
|
|
|
from vllm.transformers_utils.tokenizer_group import (BaseTokenizerGroup,
|
|
|
|
get_tokenizer_group)
|
2024-03-11 11:03:45 -07:00
|
|
|
from vllm.utils import Counter
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
logger = init_logger(__name__)
|
2024-01-31 14:58:07 -08:00
|
|
|
_LOCAL_LOGGING_INTERVAL_SEC = 5
|
2023-08-02 16:42:01 -07:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2023-06-17 00:13:02 +08:00
|
|
|
class LLMEngine:
|
2023-06-17 17:25:21 +08:00
|
|
|
"""An LLM engine that receives requests and generates texts.
|
2023-06-07 18:25:20 +08:00
|
|
|
|
2023-06-17 03:07:40 -07:00
|
|
|
This is the main class for the vLLM engine. It receives requests
|
2023-06-07 18:25:20 +08:00
|
|
|
from clients and generates texts from the LLM. It includes a tokenizer, a
|
|
|
|
language model (possibly distributed across multiple GPUs), and GPU memory
|
|
|
|
space allocated for intermediate states (aka KV cache). This class utilizes
|
|
|
|
iteration-level scheduling and efficient memory management to maximize the
|
|
|
|
serving throughput.
|
|
|
|
|
|
|
|
The `LLM` class wraps this class for offline batched inference and the
|
2023-06-17 00:13:02 +08:00
|
|
|
`AsyncLLMEngine` class wraps this class for online serving.
|
2023-06-07 18:25:20 +08:00
|
|
|
|
2023-06-17 17:25:21 +08:00
|
|
|
NOTE: The config arguments are derived from the `EngineArgs` class. For the
|
|
|
|
comprehensive list of arguments, see `EngineArgs`.
|
2023-06-07 18:25:20 +08:00
|
|
|
|
|
|
|
Args:
|
|
|
|
model_config: The configuration related to the LLM model.
|
|
|
|
cache_config: The configuration related to the KV cache memory
|
|
|
|
management.
|
|
|
|
parallel_config: The configuration related to distributed execution.
|
|
|
|
scheduler_config: The configuration related to the request scheduler.
|
2024-02-02 07:46:39 +08:00
|
|
|
device_config: The configuration related to the device.
|
2024-03-11 11:03:45 -07:00
|
|
|
executor_class: The model executor class for managing distributed
|
|
|
|
execution.
|
2023-06-07 18:25:20 +08:00
|
|
|
log_stats: Whether to log statistics.
|
|
|
|
"""
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_config: ModelConfig,
|
|
|
|
cache_config: CacheConfig,
|
|
|
|
parallel_config: ParallelConfig,
|
|
|
|
scheduler_config: SchedulerConfig,
|
2024-02-02 07:46:39 +08:00
|
|
|
device_config: DeviceConfig,
|
2024-01-24 00:26:37 +01:00
|
|
|
lora_config: Optional[LoRAConfig],
|
2024-03-11 11:03:45 -07:00
|
|
|
executor_class: Type[ExecutorBase],
|
2023-05-21 17:04:18 -07:00
|
|
|
log_stats: bool,
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> None:
|
|
|
|
logger.info(
|
2024-03-03 00:00:29 -05:00
|
|
|
f"Initializing an LLM engine (v{vllm.__version__}) with config: "
|
2023-05-20 13:06:59 -07:00
|
|
|
f"model={model_config.model!r}, "
|
2023-06-28 09:46:58 -07:00
|
|
|
f"tokenizer={model_config.tokenizer!r}, "
|
2023-06-28 14:19:22 -07:00
|
|
|
f"tokenizer_mode={model_config.tokenizer_mode}, "
|
2023-09-14 06:20:02 +08:00
|
|
|
f"revision={model_config.revision}, "
|
2023-10-02 22:19:46 -04:00
|
|
|
f"tokenizer_revision={model_config.tokenizer_revision}, "
|
2023-07-07 20:04:58 +02:00
|
|
|
f"trust_remote_code={model_config.trust_remote_code}, "
|
2023-05-20 13:06:59 -07:00
|
|
|
f"dtype={model_config.dtype}, "
|
2023-09-28 14:44:02 -07:00
|
|
|
f"max_seq_len={model_config.max_model_len}, "
|
2023-05-20 13:06:59 -07:00
|
|
|
f"download_dir={model_config.download_dir!r}, "
|
2023-09-07 15:49:52 -07:00
|
|
|
f"load_format={model_config.load_format}, "
|
2023-05-20 13:06:59 -07:00
|
|
|
f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
|
2024-03-10 19:49:14 -07:00
|
|
|
f"disable_custom_all_reduce="
|
|
|
|
f"{parallel_config.disable_custom_all_reduce}, "
|
2023-09-16 00:03:37 -07:00
|
|
|
f"quantization={model_config.quantization}, "
|
2023-12-16 21:12:08 -08:00
|
|
|
f"enforce_eager={model_config.enforce_eager}, "
|
2024-01-29 08:43:54 +08:00
|
|
|
f"kv_cache_dtype={cache_config.cache_dtype}, "
|
2024-02-02 07:46:39 +08:00
|
|
|
f"device_config={device_config.device}, "
|
2023-07-03 11:31:55 -07:00
|
|
|
f"seed={model_config.seed})")
|
2023-05-20 13:06:59 -07:00
|
|
|
# TODO(woosuk): Print more configs in debug mode.
|
|
|
|
|
|
|
|
self.model_config = model_config
|
|
|
|
self.cache_config = cache_config
|
2024-01-24 00:26:37 +01:00
|
|
|
self.lora_config = lora_config
|
2023-05-20 13:06:59 -07:00
|
|
|
self.parallel_config = parallel_config
|
|
|
|
self.scheduler_config = scheduler_config
|
2024-02-02 07:46:39 +08:00
|
|
|
self.device_config = device_config
|
2023-05-20 13:06:59 -07:00
|
|
|
self.log_stats = log_stats
|
|
|
|
self._verify_args()
|
|
|
|
|
2024-01-24 00:26:37 +01:00
|
|
|
self._init_tokenizer()
|
2024-03-22 13:44:12 -07:00
|
|
|
self.detokenizer = Detokenizer(self.tokenizer)
|
2023-05-20 13:06:59 -07:00
|
|
|
self.seq_counter = Counter()
|
|
|
|
|
2024-03-11 11:03:45 -07:00
|
|
|
self.model_executor = executor_class(model_config, cache_config,
|
|
|
|
parallel_config, scheduler_config,
|
|
|
|
device_config, lora_config)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-03-15 16:37:01 -07:00
|
|
|
# Ping the tokenizer to ensure liveness if it runs in a
|
|
|
|
# different process.
|
|
|
|
self.tokenizer.ping()
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
# Create the scheduler.
|
2024-03-11 11:03:45 -07:00
|
|
|
# NOTE: the cache_config here have been updated with the numbers of
|
|
|
|
# GPU and CPU blocks, which are profiled in the distributed executor.
|
2024-01-24 00:26:37 +01:00
|
|
|
self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
|
2023-08-02 16:42:01 -07:00
|
|
|
|
2024-01-31 14:58:07 -08:00
|
|
|
# Metric Logging.
|
|
|
|
if self.log_stats:
|
|
|
|
self.stat_logger = StatLogger(
|
2024-02-25 19:54:00 +00:00
|
|
|
local_interval=_LOCAL_LOGGING_INTERVAL_SEC,
|
|
|
|
labels=dict(model_name=model_config.model))
|
2024-02-29 14:15:18 +08:00
|
|
|
self.stat_logger.info("cache_config", self.cache_config)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-03-11 11:03:45 -07:00
|
|
|
@classmethod
|
|
|
|
def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
|
|
|
|
"""Creates an LLM engine from the engine arguments."""
|
|
|
|
# Create the engine configs.
|
|
|
|
engine_configs = engine_args.create_engine_configs()
|
|
|
|
parallel_config = engine_configs[2]
|
2024-03-21 18:22:17 -07:00
|
|
|
device_config = engine_configs[4]
|
2024-03-11 11:03:45 -07:00
|
|
|
|
|
|
|
# Initialize the cluster and specify the executor class.
|
2024-03-21 18:22:17 -07:00
|
|
|
if device_config.device_type == "neuron":
|
|
|
|
from vllm.executor.neuron_executor import NeuronExecutor
|
|
|
|
executor_class = NeuronExecutor
|
|
|
|
elif parallel_config.worker_use_ray:
|
2024-03-11 11:03:45 -07:00
|
|
|
initialize_ray_cluster(parallel_config)
|
|
|
|
from vllm.executor.ray_gpu_executor import RayGPUExecutor
|
|
|
|
executor_class = RayGPUExecutor
|
|
|
|
else:
|
|
|
|
assert parallel_config.world_size == 1, (
|
|
|
|
"Ray is required if parallel_config.world_size > 1.")
|
|
|
|
from vllm.executor.gpu_executor import GPUExecutor
|
|
|
|
executor_class = GPUExecutor
|
|
|
|
|
|
|
|
# Create the LLM engine.
|
|
|
|
engine = cls(*engine_configs,
|
|
|
|
executor_class=executor_class,
|
|
|
|
log_stats=not engine_args.disable_log_stats)
|
|
|
|
return engine
|
2024-02-09 02:57:25 +09:00
|
|
|
|
2024-03-05 16:17:20 -08:00
|
|
|
def __reduce__(self):
|
|
|
|
# This is to ensure that the LLMEngine is not referenced in
|
|
|
|
# the closure used to initialize Ray worker actors
|
|
|
|
raise RuntimeError("LLMEngine should not be pickled!")
|
|
|
|
|
2024-03-11 10:17:16 +08:00
|
|
|
def get_tokenizer(self) -> "PreTrainedTokenizer":
|
2024-03-22 13:44:12 -07:00
|
|
|
return self.tokenizer.get_lora_tokenizer(None)
|
2024-03-11 10:17:16 +08:00
|
|
|
|
|
|
|
def get_tokenizer_for_seq(self,
|
|
|
|
sequence: Sequence) -> "PreTrainedTokenizer":
|
2024-01-24 00:26:37 +01:00
|
|
|
return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
|
|
|
|
|
|
|
|
def _init_tokenizer(self, **tokenizer_init_kwargs):
|
|
|
|
init_kwargs = dict(
|
2024-03-15 16:37:01 -07:00
|
|
|
tokenizer_id=self.model_config.tokenizer,
|
2024-01-24 00:26:37 +01:00
|
|
|
enable_lora=bool(self.lora_config),
|
|
|
|
max_num_seqs=self.scheduler_config.max_num_seqs,
|
|
|
|
max_input_length=None,
|
|
|
|
tokenizer_mode=self.model_config.tokenizer_mode,
|
|
|
|
trust_remote_code=self.model_config.trust_remote_code,
|
|
|
|
revision=self.model_config.tokenizer_revision)
|
|
|
|
init_kwargs.update(tokenizer_init_kwargs)
|
2024-03-15 16:37:01 -07:00
|
|
|
|
|
|
|
self.tokenizer: BaseTokenizerGroup = get_tokenizer_group(
|
|
|
|
self.parallel_config.tokenizer_pool_config, **init_kwargs)
|
2024-01-24 00:26:37 +01:00
|
|
|
|
2024-03-21 18:07:48 +08:00
|
|
|
if len(self.get_tokenizer()) != self.model_config.get_vocab_size():
|
|
|
|
logger.warning(
|
|
|
|
f"The tokenizer's vocabulary size {len(self.get_tokenizer())}"
|
|
|
|
f" does not match the model's vocabulary size "
|
|
|
|
f"{self.model_config.get_vocab_size()}. This might "
|
|
|
|
f"cause an error in decoding. Please change config.json "
|
|
|
|
"to match the tokenizer's vocabulary size.")
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def _verify_args(self) -> None:
|
|
|
|
self.model_config.verify_with_parallel_config(self.parallel_config)
|
2023-05-23 18:22:26 -07:00
|
|
|
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
2024-01-24 00:26:37 +01:00
|
|
|
if self.lora_config:
|
|
|
|
self.lora_config.verify_with_model_config(self.model_config)
|
|
|
|
self.lora_config.verify_with_scheduler_config(
|
|
|
|
self.scheduler_config)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-01-24 00:26:37 +01:00
|
|
|
def encode_request(
|
|
|
|
self,
|
|
|
|
request_id: str, # pylint: disable=unused-argument
|
|
|
|
prompt: Optional[str],
|
|
|
|
prompt_token_ids: Optional[List[int]] = None,
|
|
|
|
lora_request: Optional[LoRARequest] = None,
|
|
|
|
):
|
|
|
|
if prompt_token_ids is None:
|
|
|
|
assert prompt is not None
|
|
|
|
prompt_token_ids = self.tokenizer.encode(request_id=request_id,
|
|
|
|
prompt=prompt,
|
|
|
|
lora_request=lora_request)
|
|
|
|
return prompt_token_ids
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def add_request(
|
|
|
|
self,
|
|
|
|
request_id: str,
|
2023-06-04 12:52:41 -07:00
|
|
|
prompt: Optional[str],
|
2023-05-20 13:06:59 -07:00
|
|
|
sampling_params: SamplingParams,
|
|
|
|
prompt_token_ids: Optional[List[int]] = None,
|
|
|
|
arrival_time: Optional[float] = None,
|
2024-01-24 00:26:37 +01:00
|
|
|
lora_request: Optional[LoRARequest] = None,
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> None:
|
2023-06-17 17:25:21 +08:00
|
|
|
"""Add a request to the engine's request pool.
|
2023-06-07 18:25:20 +08:00
|
|
|
|
|
|
|
The request is added to the request pool and will be processed by the
|
2023-06-17 17:25:21 +08:00
|
|
|
scheduler as `engine.step()` is called. The exact scheduling policy is
|
2023-06-07 18:25:20 +08:00
|
|
|
determined by the scheduler.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
request_id: The unique ID of the request.
|
|
|
|
prompt: The prompt string. Can be None if prompt_token_ids is
|
|
|
|
provided.
|
|
|
|
sampling_params: The sampling parameters for text generation.
|
|
|
|
prompt_token_ids: The token IDs of the prompt. If None, we
|
|
|
|
use the tokenizer to convert the prompts to token IDs.
|
|
|
|
arrival_time: The arrival time of the request. If None, we use
|
2023-10-02 19:22:05 -07:00
|
|
|
the current monotonic time.
|
2024-01-12 11:26:49 +08:00
|
|
|
|
|
|
|
Details:
|
|
|
|
- Set arrival_time to the current time if it is None.
|
|
|
|
- Set prompt_token_ids to the encoded prompt if it is None.
|
|
|
|
- Create `best_of` number of :class:`~vllm.Sequence` objects.
|
|
|
|
- Create a :class:`~vllm.SequenceGroup` object
|
|
|
|
from the list of :class:`~vllm.Sequence`.
|
|
|
|
- Add the :class:`~vllm.SequenceGroup` object to the scheduler.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> # initialize engine
|
|
|
|
>>> engine = LLMEngine.from_engine_args(engine_args)
|
|
|
|
>>> # set request arguments
|
|
|
|
>>> example_prompt = "Who is the president of the United States?"
|
|
|
|
>>> sampling_params = SamplingParams(temperature=0.0)
|
|
|
|
>>> request_id = 0
|
|
|
|
>>>
|
|
|
|
>>> # add the request to the engine
|
|
|
|
>>> engine.add_request(
|
|
|
|
>>> str(request_id),
|
|
|
|
>>> example_prompt,
|
|
|
|
>>> SamplingParams(temperature=0.0))
|
|
|
|
>>> # continue the request processing
|
|
|
|
>>> ...
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2024-01-24 00:26:37 +01:00
|
|
|
if lora_request is not None and not self.lora_config:
|
|
|
|
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
|
|
|
|
"not enabled!")
|
2024-03-04 11:54:06 -08:00
|
|
|
max_logprobs = self.get_model_config().max_logprobs
|
|
|
|
if (sampling_params.logprobs
|
|
|
|
and sampling_params.logprobs > max_logprobs) or (
|
|
|
|
sampling_params.prompt_logprobs
|
|
|
|
and sampling_params.prompt_logprobs > max_logprobs):
|
|
|
|
raise ValueError(f"Cannot request more than "
|
|
|
|
f"{max_logprobs} logprobs.")
|
2023-05-20 13:06:59 -07:00
|
|
|
if arrival_time is None:
|
2024-03-16 02:25:43 +08:00
|
|
|
arrival_time = time.time()
|
2024-01-24 00:26:37 +01:00
|
|
|
prompt_token_ids = self.encode_request(
|
|
|
|
request_id=request_id,
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_token_ids=prompt_token_ids,
|
|
|
|
lora_request=lora_request)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Create the sequences.
|
|
|
|
block_size = self.cache_config.block_size
|
2023-09-04 17:29:42 -07:00
|
|
|
seq_id = next(self.seq_counter)
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id = self.tokenizer.get_lora_tokenizer(
|
|
|
|
lora_request).eos_token_id
|
2024-01-24 00:26:37 +01:00
|
|
|
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id, lora_request)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-02-29 11:20:42 -08:00
|
|
|
# Defensive copy of SamplingParams, which are used by the sampler,
|
|
|
|
# this doesn't deep-copy LogitsProcessor objects
|
|
|
|
sampling_params = sampling_params.clone()
|
2024-02-17 11:18:04 -08:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
# Create the sequence group.
|
2023-09-04 17:29:42 -07:00
|
|
|
seq_group = SequenceGroup(request_id, [seq], sampling_params,
|
2024-03-02 03:50:01 -05:00
|
|
|
arrival_time, lora_request)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Add the sequence group to the scheduler.
|
|
|
|
self.scheduler.add_seq_group(seq_group)
|
|
|
|
|
2023-09-03 21:43:43 -07:00
|
|
|
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
|
|
|
|
"""Aborts a request(s) with the given ID.
|
2023-06-07 18:25:20 +08:00
|
|
|
|
|
|
|
Args:
|
2023-09-03 21:43:43 -07:00
|
|
|
request_id: The ID(s) of the request to abort.
|
2024-01-12 11:26:49 +08:00
|
|
|
|
|
|
|
Details:
|
|
|
|
- Refer to the
|
|
|
|
:meth:`~vllm.core.scheduler.Scheduler.abort_seq_group`
|
|
|
|
from class :class:`~vllm.core.scheduler.Scheduler`.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> # initialize engine and add a request with request_id
|
|
|
|
>>> request_id = str(0)
|
|
|
|
>>> # abort the request
|
|
|
|
>>> engine.abort_request(request_id)
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2023-06-05 23:44:50 +08:00
|
|
|
self.scheduler.abort_seq_group(request_id)
|
|
|
|
|
2023-07-03 14:50:56 -07:00
|
|
|
def get_model_config(self) -> ModelConfig:
|
|
|
|
"""Gets the model configuration."""
|
|
|
|
return self.model_config
|
|
|
|
|
2023-05-28 03:20:05 -07:00
|
|
|
def get_num_unfinished_requests(self) -> int:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Gets the number of unfinished requests."""
|
2023-05-28 03:20:05 -07:00
|
|
|
return self.scheduler.get_num_unfinished_seq_groups()
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def has_unfinished_requests(self) -> bool:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Returns True if there are unfinished requests."""
|
2023-05-20 13:06:59 -07:00
|
|
|
return self.scheduler.has_unfinished_seqs()
|
|
|
|
|
2023-09-04 17:29:42 -07:00
|
|
|
def _check_beam_search_early_stopping(
|
|
|
|
self,
|
|
|
|
early_stopping: Union[bool, str],
|
|
|
|
sampling_params: SamplingParams,
|
|
|
|
best_running_seq: Sequence,
|
|
|
|
current_worst_seq: Sequence,
|
|
|
|
) -> bool:
|
|
|
|
assert sampling_params.use_beam_search
|
|
|
|
length_penalty = sampling_params.length_penalty
|
|
|
|
if early_stopping is True:
|
|
|
|
return True
|
|
|
|
|
2024-03-05 15:35:43 -08:00
|
|
|
current_worst_score = current_worst_seq.get_beam_search_score(
|
2023-09-04 17:29:42 -07:00
|
|
|
length_penalty=length_penalty,
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id=current_worst_seq.eos_token_id)
|
2023-09-04 17:29:42 -07:00
|
|
|
if early_stopping is False:
|
2024-03-05 15:35:43 -08:00
|
|
|
highest_attainable_score = best_running_seq.get_beam_search_score(
|
2023-09-04 17:29:42 -07:00
|
|
|
length_penalty=length_penalty,
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id=best_running_seq.eos_token_id)
|
2023-09-04 17:29:42 -07:00
|
|
|
else:
|
|
|
|
assert early_stopping == "never"
|
|
|
|
if length_penalty > 0.0:
|
|
|
|
# If length_penalty > 0.0, beam search will prefer longer
|
|
|
|
# sequences. The highest attainable score calculation is
|
|
|
|
# based on the longest possible sequence length in this case.
|
|
|
|
max_possible_length = max(
|
|
|
|
best_running_seq.get_prompt_len() +
|
|
|
|
sampling_params.max_tokens,
|
|
|
|
self.scheduler_config.max_model_len)
|
|
|
|
highest_attainable_score = (
|
|
|
|
best_running_seq.get_beam_search_score(
|
|
|
|
length_penalty=length_penalty,
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id=best_running_seq.eos_token_id,
|
2023-09-04 17:29:42 -07:00
|
|
|
seq_len=max_possible_length))
|
|
|
|
else:
|
|
|
|
# Otherwise, beam search will prefer shorter sequences. The
|
|
|
|
# highest attainable score calculation is based on the current
|
|
|
|
# sequence length.
|
|
|
|
highest_attainable_score = (
|
|
|
|
best_running_seq.get_beam_search_score(
|
|
|
|
length_penalty=length_penalty,
|
2024-03-05 15:35:43 -08:00
|
|
|
eos_token_id=best_running_seq.eos_token_id))
|
2023-09-04 17:29:42 -07:00
|
|
|
return current_worst_score >= highest_attainable_score
|
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
def _process_sequence_group_outputs(self, seq_group: SequenceGroup,
|
2023-11-28 14:08:01 -08:00
|
|
|
outputs: SequenceGroupOutput) -> None:
|
2024-01-31 14:58:07 -08:00
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
# Process prompt logprobs
|
|
|
|
prompt_logprobs = outputs.prompt_logprobs
|
|
|
|
if prompt_logprobs is not None:
|
2024-03-22 13:44:12 -07:00
|
|
|
self.detokenizer.decode_prompt_logprobs_inplace(
|
|
|
|
seq_group, prompt_logprobs)
|
2023-10-16 10:56:50 -07:00
|
|
|
seq_group.prompt_logprobs = prompt_logprobs
|
|
|
|
|
|
|
|
# Process samples
|
|
|
|
samples = outputs.samples
|
2023-09-04 17:29:42 -07:00
|
|
|
parent_seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
|
|
|
|
existing_finished_seqs = seq_group.get_finished_seqs()
|
|
|
|
parent_child_dict = {
|
|
|
|
parent_seq.seq_id: []
|
|
|
|
for parent_seq in parent_seqs
|
|
|
|
}
|
|
|
|
for sample in samples:
|
|
|
|
parent_child_dict[sample.parent_seq_id].append(sample)
|
|
|
|
# List of (child, parent)
|
|
|
|
child_seqs: List[Tuple[Sequence, Sequence]] = []
|
|
|
|
|
|
|
|
# Process the child samples for each parent sequence
|
|
|
|
for parent in parent_seqs:
|
2023-11-28 14:08:01 -08:00
|
|
|
child_samples: List[SequenceOutput] = parent_child_dict[
|
2023-09-04 17:29:42 -07:00
|
|
|
parent.seq_id]
|
|
|
|
if len(child_samples) == 0:
|
|
|
|
# This parent sequence has no children samples. Remove
|
|
|
|
# the parent sequence from the sequence group since it will
|
|
|
|
# not be used in the future iterations.
|
|
|
|
parent.status = SequenceStatus.FINISHED_ABORTED
|
|
|
|
seq_group.remove(parent.seq_id)
|
|
|
|
self.scheduler.free_seq(parent)
|
|
|
|
continue
|
|
|
|
# Fork the parent sequence if there are multiple child samples.
|
|
|
|
for child_sample in child_samples[:-1]:
|
|
|
|
new_child_seq_id = next(self.seq_counter)
|
|
|
|
child = parent.fork(new_child_seq_id)
|
|
|
|
child.append_token_id(child_sample.output_token,
|
|
|
|
child_sample.logprobs)
|
|
|
|
child_seqs.append((child, parent))
|
|
|
|
# Continue the parent sequence for the last child sample.
|
|
|
|
# We reuse the parent sequence here to reduce redundant memory
|
|
|
|
# copies, especially when using non-beam search sampling methods.
|
|
|
|
last_child_sample = child_samples[-1]
|
|
|
|
parent.append_token_id(last_child_sample.output_token,
|
|
|
|
last_child_sample.logprobs)
|
|
|
|
child_seqs.append((parent, parent))
|
|
|
|
|
|
|
|
for seq, _ in child_seqs:
|
2024-03-22 13:44:12 -07:00
|
|
|
self.detokenizer.decode_sequence_inplace(seq,
|
|
|
|
seq_group.sampling_params)
|
2023-09-04 17:29:42 -07:00
|
|
|
self._check_stop(seq, seq_group.sampling_params)
|
|
|
|
|
|
|
|
# Non-beam search case
|
|
|
|
if not seq_group.sampling_params.use_beam_search:
|
|
|
|
# For newly created child sequences, add them to the sequence group
|
|
|
|
# and fork them in block manager if they are not finished.
|
|
|
|
for seq, parent in child_seqs:
|
|
|
|
if seq is not parent:
|
|
|
|
seq_group.add(seq)
|
|
|
|
if not seq.is_finished():
|
|
|
|
self.scheduler.fork_seq(parent, seq)
|
|
|
|
|
|
|
|
# Free the finished and selected parent sequences' memory in block
|
|
|
|
# manager. Keep them in the sequence group as candidate output.
|
|
|
|
# NOTE: we need to fork the new sequences before freeing the
|
|
|
|
# old sequences.
|
|
|
|
for seq, parent in child_seqs:
|
|
|
|
if seq is parent and seq.is_finished():
|
|
|
|
self.scheduler.free_seq(seq)
|
|
|
|
return
|
|
|
|
|
|
|
|
# Beam search case
|
|
|
|
# Select the child sequences to keep in the sequence group.
|
|
|
|
selected_child_seqs = []
|
|
|
|
unselected_child_seqs = []
|
|
|
|
beam_width = seq_group.sampling_params.best_of
|
|
|
|
length_penalty = seq_group.sampling_params.length_penalty
|
|
|
|
|
|
|
|
# Select the newly finished sequences with the highest scores
|
|
|
|
# to replace existing finished sequences.
|
|
|
|
# Tuple of (seq, parent, is_new)
|
|
|
|
existing_finished_seqs = [(seq, None, False)
|
|
|
|
for seq in existing_finished_seqs]
|
|
|
|
new_finished_seqs = [(seq, parent, True) for seq, parent in child_seqs
|
|
|
|
if seq.is_finished()]
|
|
|
|
all_finished_seqs = existing_finished_seqs + new_finished_seqs
|
|
|
|
# Sort the finished sequences by their scores.
|
|
|
|
all_finished_seqs.sort(key=lambda x: x[0].get_beam_search_score(
|
2024-03-05 15:35:43 -08:00
|
|
|
length_penalty=length_penalty, eos_token_id=x[0].eos_token_id),
|
2023-09-04 17:29:42 -07:00
|
|
|
reverse=True)
|
|
|
|
for seq, parent, is_new in all_finished_seqs[:beam_width]:
|
|
|
|
if is_new:
|
|
|
|
# A newly generated child sequence finishes and has a high
|
|
|
|
# score, so we will add it into the sequence group.
|
|
|
|
selected_child_seqs.append((seq, parent))
|
|
|
|
for seq, parent, is_new in all_finished_seqs[beam_width:]:
|
|
|
|
if is_new:
|
|
|
|
# A newly generated child sequence finishes but has a low
|
|
|
|
# score, so we will not add it into the sequence group.
|
|
|
|
# Additionally, if this sequence is a continuation of a
|
|
|
|
# parent sequence, we will need remove the parent sequence
|
|
|
|
# from the sequence group.
|
|
|
|
unselected_child_seqs.append((seq, parent))
|
|
|
|
else:
|
|
|
|
# An existing finished sequence has a low score, so we will
|
|
|
|
# remove it from the sequence group.
|
|
|
|
seq_group.remove(seq.seq_id)
|
|
|
|
|
|
|
|
# select the top beam_width sequences from the running
|
|
|
|
# sequences for the next iteration to continue the beam
|
|
|
|
# search.
|
|
|
|
running_child_seqs = [(seq, parent) for seq, parent in child_seqs
|
|
|
|
if not seq.is_finished()]
|
|
|
|
# Sort the running sequences by their scores.
|
|
|
|
running_child_seqs.sort(key=lambda x: x[0].get_beam_search_score(
|
2024-03-05 15:35:43 -08:00
|
|
|
length_penalty=length_penalty, eos_token_id=x[0].eos_token_id),
|
2023-09-04 17:29:42 -07:00
|
|
|
reverse=True)
|
|
|
|
|
|
|
|
# Check if we can stop the beam search.
|
|
|
|
if len(running_child_seqs) == 0:
|
|
|
|
# No running sequences, stop the beam search.
|
|
|
|
stop_beam_search = True
|
|
|
|
elif len(all_finished_seqs) < beam_width:
|
|
|
|
# Not enough finished sequences, continue the beam search.
|
|
|
|
stop_beam_search = False
|
|
|
|
else:
|
|
|
|
# Check the early stopping criteria
|
|
|
|
best_running_seq = running_child_seqs[0][0]
|
|
|
|
current_worst_seq = all_finished_seqs[beam_width - 1][0]
|
|
|
|
stop_beam_search = self._check_beam_search_early_stopping(
|
|
|
|
seq_group.sampling_params.early_stopping,
|
|
|
|
seq_group.sampling_params, best_running_seq, current_worst_seq)
|
|
|
|
|
|
|
|
if stop_beam_search:
|
|
|
|
# Stop the beam search and remove all the running sequences from
|
|
|
|
# the sequence group.
|
|
|
|
unselected_child_seqs.extend(running_child_seqs)
|
|
|
|
else:
|
|
|
|
# Continue the beam search and select the top beam_width sequences
|
|
|
|
# to continue the beam search.
|
|
|
|
selected_child_seqs.extend(running_child_seqs[:beam_width])
|
|
|
|
# The remaining running sequences will not be used in the next
|
|
|
|
# iteration. Again, if these sequences are continuations of
|
|
|
|
# parent sequences, we will need to remove the parent sequences
|
|
|
|
# from the sequence group.
|
|
|
|
unselected_child_seqs.extend(running_child_seqs[beam_width:])
|
|
|
|
|
|
|
|
# For newly created child sequences, add them to the sequence group
|
|
|
|
# and fork them in block manager if they are not finished.
|
|
|
|
for seq, parent in selected_child_seqs:
|
|
|
|
if seq is not parent:
|
|
|
|
seq_group.add(seq)
|
|
|
|
if not seq.is_finished():
|
|
|
|
self.scheduler.fork_seq(parent, seq)
|
|
|
|
|
|
|
|
# Free the finished and selected parent sequences' memory in block
|
|
|
|
# manager. Keep them in the sequence group as candidate output.
|
|
|
|
for seq, parent in selected_child_seqs:
|
|
|
|
if seq is parent and seq.is_finished():
|
|
|
|
self.scheduler.free_seq(seq)
|
|
|
|
|
|
|
|
# Remove the unselected parent sequences from the sequence group and
|
|
|
|
# free their memory in block manager.
|
|
|
|
for seq, parent in unselected_child_seqs:
|
|
|
|
if seq is parent:
|
|
|
|
# Remove the parent sequence if it is not selected for next
|
|
|
|
# iteration
|
|
|
|
seq_group.remove(seq.seq_id)
|
|
|
|
self.scheduler.free_seq(seq)
|
|
|
|
|
|
|
|
def _process_model_outputs(
|
|
|
|
self, output: SamplerOutput,
|
2023-09-03 21:43:43 -07:00
|
|
|
scheduler_outputs: SchedulerOutputs) -> List[RequestOutput]:
|
2024-02-20 21:55:57 -08:00
|
|
|
now = time.time()
|
2023-09-04 17:29:42 -07:00
|
|
|
# Update the scheduled sequence groups with the model outputs.
|
|
|
|
scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
|
2024-03-02 03:50:01 -05:00
|
|
|
|
|
|
|
# If prefix caching is enabled, mark all blocks in the sequence groups
|
|
|
|
# as completed so that future requests don't attempt to recompute them
|
|
|
|
if self.cache_config.enable_prefix_caching:
|
|
|
|
for seq_group in scheduled_seq_groups:
|
|
|
|
self.scheduler.mark_blocks_as_computed(seq_group)
|
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
for seq_group, outputs in zip(scheduled_seq_groups, output):
|
|
|
|
self._process_sequence_group_outputs(seq_group, outputs)
|
2023-05-21 11:18:00 -07:00
|
|
|
|
|
|
|
# Free the finished sequence groups.
|
|
|
|
self.scheduler.free_finished_seq_groups()
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Create the outputs.
|
|
|
|
request_outputs: List[RequestOutput] = []
|
2024-01-07 19:48:07 +02:00
|
|
|
for seq_group in scheduled_seq_groups:
|
2024-02-20 21:55:57 -08:00
|
|
|
seq_group.maybe_set_first_token_time(now)
|
2024-01-07 19:48:07 +02:00
|
|
|
request_output = RequestOutput.from_seq_group(seq_group)
|
|
|
|
request_outputs.append(request_output)
|
|
|
|
for seq_group in scheduler_outputs.ignored_seq_groups:
|
2023-05-21 11:18:00 -07:00
|
|
|
request_output = RequestOutput.from_seq_group(seq_group)
|
2023-05-20 13:06:59 -07:00
|
|
|
request_outputs.append(request_output)
|
2023-08-02 16:42:01 -07:00
|
|
|
|
2024-01-31 14:58:07 -08:00
|
|
|
# Log stats.
|
2023-08-02 16:42:01 -07:00
|
|
|
if self.log_stats:
|
2024-01-31 14:58:07 -08:00
|
|
|
self.stat_logger.log(self._get_stats(scheduler_outputs))
|
2023-05-20 13:06:59 -07:00
|
|
|
return request_outputs
|
|
|
|
|
2023-09-03 21:43:43 -07:00
|
|
|
def step(self) -> List[RequestOutput]:
|
|
|
|
"""Performs one decoding iteration and returns newly generated results.
|
|
|
|
|
2024-01-12 11:26:49 +08:00
|
|
|
.. figure:: https://i.imgur.com/sv2HssD.png
|
|
|
|
:alt: Overview of the step function
|
|
|
|
:align: center
|
|
|
|
|
|
|
|
Overview of the step function.
|
|
|
|
|
|
|
|
Details:
|
|
|
|
- Step 1: Schedules the sequences to be executed in the next
|
|
|
|
iteration and the token blocks to be swapped in/out/copy.
|
|
|
|
|
|
|
|
- Depending on the scheduling policy,
|
|
|
|
sequences may be `preempted/reordered`.
|
|
|
|
- A Sequence Group (SG) refer to a group of sequences
|
|
|
|
that are generated from the same prompt.
|
|
|
|
|
2024-03-11 11:03:45 -07:00
|
|
|
- Step 2: Calls the distributed executor to execute the model.
|
2024-01-12 11:26:49 +08:00
|
|
|
- Step 3: Processes the model output. This mainly includes:
|
|
|
|
|
|
|
|
- Decodes the relevant outputs.
|
|
|
|
- Updates the scheduled sequence groups with model outputs
|
|
|
|
based on its `sampling parameters` (`use_beam_search` or not).
|
|
|
|
- Frees the finished sequence groups.
|
|
|
|
|
|
|
|
- Finally, it creates and returns the newly generated results.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> # Please see the example/ folder for more detailed examples.
|
|
|
|
>>>
|
|
|
|
>>> # initialize engine and request arguments
|
|
|
|
>>> engine = LLMEngine.from_engine_args(engine_args)
|
|
|
|
>>> example_inputs = [(0, "What is LLM?",
|
|
|
|
>>> SamplingParams(temperature=0.0))]
|
|
|
|
>>>
|
|
|
|
>>> # Start the engine with an event loop
|
|
|
|
>>> while True:
|
|
|
|
>>> if example_inputs:
|
|
|
|
>>> req_id, prompt, sampling_params = example_inputs.pop(0)
|
|
|
|
>>> engine.add_request(str(req_id), prompt, sampling_params)
|
|
|
|
>>>
|
|
|
|
>>> # continue the request processing
|
|
|
|
>>> request_outputs = engine.step()
|
|
|
|
>>> for request_output in request_outputs:
|
|
|
|
>>> if request_output.finished:
|
|
|
|
>>> # return or show the request output
|
|
|
|
>>>
|
|
|
|
>>> if not (engine.has_unfinished_requests() or example_inputs):
|
|
|
|
>>> break
|
2023-09-03 21:43:43 -07:00
|
|
|
"""
|
2023-12-26 13:41:09 +08:00
|
|
|
seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
|
2023-09-03 21:43:43 -07:00
|
|
|
|
2024-01-04 03:30:22 +08:00
|
|
|
if not scheduler_outputs.is_empty():
|
2024-03-11 11:03:45 -07:00
|
|
|
output = self.model_executor.execute_model(
|
|
|
|
seq_group_metadata_list, scheduler_outputs.blocks_to_swap_in,
|
|
|
|
scheduler_outputs.blocks_to_swap_out,
|
|
|
|
scheduler_outputs.blocks_to_copy)
|
2024-01-04 03:30:22 +08:00
|
|
|
else:
|
|
|
|
output = []
|
2023-09-03 21:43:43 -07:00
|
|
|
|
2023-11-16 13:11:41 -08:00
|
|
|
return self._process_model_outputs(output, scheduler_outputs)
|
2023-09-03 21:43:43 -07:00
|
|
|
|
2024-01-05 15:24:42 +02:00
|
|
|
def do_log_stats(self) -> None:
|
2024-01-31 14:58:07 -08:00
|
|
|
"""Forced log when no requests active."""
|
|
|
|
if self.log_stats:
|
|
|
|
self.stat_logger.log(self._get_stats(scheduler_outputs=None))
|
2024-01-05 15:24:42 +02:00
|
|
|
|
2024-01-31 14:58:07 -08:00
|
|
|
def _get_stats(self,
|
|
|
|
scheduler_outputs: Optional[SchedulerOutputs]) -> Stats:
|
|
|
|
"""Get Stats to be Logged to Prometheus."""
|
2024-03-16 02:25:43 +08:00
|
|
|
now = time.time()
|
2023-08-02 16:42:01 -07:00
|
|
|
|
2024-01-31 14:58:07 -08:00
|
|
|
# KV Cache Usage in %.
|
|
|
|
num_total_gpu = self.cache_config.num_gpu_blocks
|
|
|
|
num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks()
|
|
|
|
gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu)
|
2023-08-02 16:42:01 -07:00
|
|
|
|
2024-01-31 14:58:07 -08:00
|
|
|
num_total_cpu = self.cache_config.num_cpu_blocks
|
|
|
|
cpu_cache_usage = 0.
|
|
|
|
if num_total_cpu > 0:
|
|
|
|
num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks(
|
|
|
|
)
|
|
|
|
cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu)
|
|
|
|
|
|
|
|
# Scheduler State
|
|
|
|
num_running = len(self.scheduler.running)
|
|
|
|
num_swapped = len(self.scheduler.swapped)
|
|
|
|
num_waiting = len(self.scheduler.waiting)
|
|
|
|
|
|
|
|
# Iteration stats if we have scheduler output.
|
|
|
|
num_prompt_tokens = 0
|
|
|
|
num_generation_tokens = 0
|
|
|
|
time_to_first_tokens = []
|
|
|
|
time_per_output_tokens = []
|
|
|
|
time_e2e_requests = []
|
|
|
|
if scheduler_outputs is not None:
|
|
|
|
prompt_run = scheduler_outputs.prompt_run
|
|
|
|
|
|
|
|
# Number of Tokens.
|
|
|
|
if prompt_run:
|
2024-02-19 09:55:41 +02:00
|
|
|
num_prompt_tokens = sum(
|
|
|
|
len(seq_group.prompt_token_ids)
|
|
|
|
for seq_group in scheduler_outputs.scheduled_seq_groups)
|
2024-02-23 00:00:12 +02:00
|
|
|
num_generation_tokens = sum(
|
|
|
|
seq_group.num_seqs()
|
|
|
|
for seq_group in scheduler_outputs.scheduled_seq_groups)
|
2024-01-31 14:58:07 -08:00
|
|
|
else:
|
|
|
|
num_generation_tokens = scheduler_outputs.num_batched_tokens
|
|
|
|
|
|
|
|
# Latency Timings.
|
|
|
|
time_last_iters = []
|
|
|
|
for seq_group in scheduler_outputs.scheduled_seq_groups:
|
2024-03-10 19:49:14 -07:00
|
|
|
# Time since last token.
|
|
|
|
# (n.b. updates seq_group.metrics.last_token_time)
|
2024-01-31 14:58:07 -08:00
|
|
|
time_last_iters.append(seq_group.get_last_latency(now))
|
|
|
|
# Time since arrival for all finished requests.
|
|
|
|
if seq_group.is_finished():
|
2024-02-20 21:55:57 -08:00
|
|
|
time_e2e_requests.append(now -
|
|
|
|
seq_group.metrics.arrival_time)
|
2024-01-31 14:58:07 -08:00
|
|
|
|
|
|
|
time_to_first_tokens = time_last_iters if prompt_run else []
|
|
|
|
time_per_output_tokens = [] if prompt_run else time_last_iters
|
|
|
|
|
|
|
|
return Stats(
|
|
|
|
now=now,
|
|
|
|
num_running=num_running,
|
|
|
|
num_swapped=num_swapped,
|
|
|
|
num_waiting=num_waiting,
|
2023-12-02 16:37:44 -08:00
|
|
|
gpu_cache_usage=gpu_cache_usage,
|
|
|
|
cpu_cache_usage=cpu_cache_usage,
|
2024-01-31 14:58:07 -08:00
|
|
|
num_prompt_tokens=num_prompt_tokens,
|
|
|
|
num_generation_tokens=num_generation_tokens,
|
|
|
|
time_to_first_tokens=time_to_first_tokens,
|
|
|
|
time_per_output_tokens=time_per_output_tokens,
|
|
|
|
time_e2e_requests=time_e2e_requests,
|
2023-12-02 16:37:44 -08:00
|
|
|
)
|
|
|
|
|
2023-09-04 17:29:42 -07:00
|
|
|
def _check_stop(self, seq: Sequence,
|
|
|
|
sampling_params: SamplingParams) -> None:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Stop the finished sequences."""
|
2023-09-04 17:29:42 -07:00
|
|
|
for stop_str in sampling_params.stop:
|
|
|
|
if seq.output_text.endswith(stop_str):
|
2024-02-04 14:32:42 -08:00
|
|
|
self._finalize_sequence(seq, sampling_params, stop_str)
|
2023-09-04 17:29:42 -07:00
|
|
|
seq.status = SequenceStatus.FINISHED_STOPPED
|
|
|
|
return
|
2023-09-22 06:34:02 +08:00
|
|
|
if seq.get_last_token_id() in sampling_params.stop_token_ids:
|
2024-02-04 14:32:42 -08:00
|
|
|
stop_str = self.get_tokenizer_for_seq(seq).convert_ids_to_tokens(
|
|
|
|
seq.get_last_token_id())
|
|
|
|
self._finalize_sequence(seq, sampling_params, stop_str)
|
2023-09-22 06:34:02 +08:00
|
|
|
seq.status = SequenceStatus.FINISHED_STOPPED
|
|
|
|
return
|
2023-09-04 17:29:42 -07:00
|
|
|
|
|
|
|
# Check if the sequence has reached max_model_len.
|
|
|
|
if seq.get_len() > self.scheduler_config.max_model_len:
|
|
|
|
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check if the sequence has reached max_tokens.
|
|
|
|
if seq.get_output_len() == sampling_params.max_tokens:
|
|
|
|
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
|
|
|
|
return
|
|
|
|
|
|
|
|
# Check if the sequence has generated the EOS token.
|
2024-03-05 15:35:43 -08:00
|
|
|
if ((not sampling_params.ignore_eos)
|
|
|
|
and seq.get_last_token_id() == seq.eos_token_id):
|
2023-09-04 17:29:42 -07:00
|
|
|
seq.status = SequenceStatus.FINISHED_STOPPED
|
|
|
|
return
|
2023-05-21 11:18:00 -07:00
|
|
|
|
2024-02-04 14:32:42 -08:00
|
|
|
def _finalize_sequence(self, seq: Sequence,
|
|
|
|
sampling_params: SamplingParams,
|
|
|
|
stop_string: str) -> None:
|
2024-03-01 15:52:22 +08:00
|
|
|
if sampling_params.include_stop_str_in_output:
|
|
|
|
return
|
|
|
|
|
|
|
|
if stop_string and seq.output_text.endswith(stop_string):
|
2024-02-04 14:32:42 -08:00
|
|
|
# Truncate the output text so that the stop string is
|
|
|
|
# not included in the output.
|
|
|
|
seq.output_text = seq.output_text[:-len(stop_string)]
|
|
|
|
|
2024-01-24 00:26:37 +01:00
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
2024-03-11 11:03:45 -07:00
|
|
|
return self.model_executor.add_lora(lora_request)
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
2024-03-11 11:03:45 -07:00
|
|
|
return self.model_executor.remove_lora(lora_id)
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def list_loras(self) -> List[int]:
|
2024-03-11 11:03:45 -07:00
|
|
|
return self.model_executor.list_loras()
|
2024-03-04 14:01:40 -08:00
|
|
|
|
|
|
|
def check_health(self) -> None:
|
2024-03-11 11:03:45 -07:00
|
|
|
self.model_executor.check_health()
|