vllm/cacheflow/models/attention.py

139 lines
5.5 KiB
Python
Raw Normal View History

from typing import List, Optional
2023-02-23 09:31:55 +00:00
from flash_attn.flash_attention import FlashAttention
2023-02-23 09:31:55 +00:00
import torch
import torch.nn as nn
from cacheflow import attention_ops
from cacheflow import cache_ops
2023-02-23 09:31:55 +00:00
from cacheflow.models import InputMetadata
class OPTCacheFlowAttention(nn.Module):
def __init__(self, scale: float) -> None:
2023-03-13 13:48:38 -07:00
super(OPTCacheFlowAttention, self).__init__()
self.scale = float(scale)
2023-02-23 09:31:55 +00:00
self.flash_attn = FlashAttention(softmax_scale=self.scale)
2023-02-23 09:31:55 +00:00
def multi_query_kv_attention(
self,
output: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
query: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
key: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
value: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
prompt_lens: List[int],
2023-02-23 09:31:55 +00:00
) -> None:
if query.dtype == torch.float:
raise ValueError('The float data type is not supported by '
'FlashAttention. Use the half data type instead.')
head_size = query.shape[2]
if head_size > 128:
raise ValueError('FlashAttention does not support head_size > 128.')
device = query.device
prefix_sum = [0]
for prompt_len in prompt_lens:
prefix_sum.append(prefix_sum[-1] + prompt_len)
prefix_sum = torch.tensor(prefix_sum, dtype=torch.int, device=device)
max_prompt_len = max(prompt_lens)
# FIXME(woosuk): Unnecessary copy. Optimize this.
qkv = torch.stack([query, key, value], dim=1)
out = self.flash_attn(
qkv,
cu_seqlens=prefix_sum,
max_s=max_prompt_len,
causal=True,
)[0]
# FIXME(woosuk): Unnecessary copy. Optimize this.
2023-03-06 10:05:27 -08:00
output.copy_(out, non_blocking=True)
2023-02-23 09:31:55 +00:00
def single_query_cached_kv_attention(
self,
output: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
query: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
2023-02-23 09:31:55 +00:00
input_metadata: InputMetadata,
) -> None:
head_size = value_cache.shape[2]
supported_head_sizes = [32, 64, 80, 96, 128, 160, 192, 256]
if head_size not in supported_head_sizes:
raise ValueError(f'head_size ({head_size}) is not supported by '
'the single_query_cached_kv_attention kernel. '
'Use one of the following head sizes: '
f'{supported_head_sizes}.')
block_size = value_cache.shape[3]
attention_ops.single_query_cached_kv_attention(
output,
query,
key_cache,
value_cache,
self.scale,
input_metadata.block_tables,
input_metadata.context_lens,
block_size,
input_metadata.max_context_len,
)
2023-02-23 09:31:55 +00:00
def forward(
self,
query: torch.Tensor, # [num_tokens, num_heads * head_size]
key: torch.Tensor, # [num_tokens, num_heads * head_size]
value: torch.Tensor, # [num_tokens, num_heads * head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
2023-02-23 09:31:55 +00:00
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
# Pre-allocate the output tensor.
output = torch.empty_like(query)
# Prune out paddings if any.
2023-02-23 23:02:25 +00:00
query = query[:input_metadata.num_valid_tokens]
key = key[:input_metadata.num_valid_tokens]
value = value[:input_metadata.num_valid_tokens]
2023-02-23 09:31:55 +00:00
# Reshape the input tensors.
num_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
2023-02-23 09:31:55 +00:00
query = query.view(-1, num_heads, head_size)
key = key.view(-1, num_heads, head_size)
value = value.view(-1, num_heads, head_size)
output = output.view(-1, num_heads, head_size)
2023-02-23 09:31:55 +00:00
# Compute the attention op for prompts.
2023-03-13 13:48:38 -07:00
num_prompt_tokens = input_metadata.num_prompt_tokens
if num_prompt_tokens > 0:
self.multi_query_kv_attention(
2023-03-06 10:05:27 -08:00
output[:num_prompt_tokens],
query[:num_prompt_tokens],
key[:num_prompt_tokens],
2023-03-22 04:45:42 +08:00
value[:num_prompt_tokens],
2023-03-06 10:05:27 -08:00
input_metadata.prompt_lens,
)
2023-02-23 09:31:55 +00:00
# Wait until the cache op is done.
if cache_event is not None:
cache_event.wait()
# Reshape the keys and values and store them in the cache.
cache_ops.reshape_and_cache(
2023-02-23 09:31:55 +00:00
key, value, key_cache, value_cache, input_metadata.slot_mapping)
if input_metadata.num_generation_tokens > 0:
# Compute the attention op for generation tokens.
self.single_query_cached_kv_attention(
2023-03-13 13:48:38 -07:00
output[num_prompt_tokens:],
query[num_prompt_tokens:],
2023-02-23 09:31:55 +00:00
key_cache,
value_cache,
input_metadata)
# Reshape the output tensor.
# NOTE(woosuk): The output tensor may include paddings.
2023-02-23 09:31:55 +00:00
return output.view(-1, num_heads * head_size)