vllm/csrc/quantization/gguf/gguf_kernel.cu

250 lines
9.5 KiB
Plaintext
Raw Normal View History

#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "ggml-common.h"
#include "vecdotq.cuh"
#include "dequantize.cuh"
#include "mmvq.cuh"
#include "mmq.cuh"
// Q8 gemv
static __global__ void quantize_q8_1(const half* __restrict__ x,
void* __restrict__ vy, const int kx,
const int kx_padded) {
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
if (ix >= kx_padded) {
return;
}
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
const int i_padded = iy * kx_padded + ix;
block_q8_1* y = (block_q8_1*)vy;
const int ib = i_padded / QK8_1; // block index
const int iqs = i_padded % QK8_1; // quant index
const float xi = ix < kx ? __half2float(x[iy * kx + ix]) : 0.0f;
float amax = fabsf(xi);
float sum = xi;
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
amax = fmaxf(amax, VLLM_SHFL_XOR_SYNC_WIDTH(amax, mask, 32));
sum += VLLM_SHFL_XOR_SYNC_WIDTH(sum, mask, 32);
}
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
}
y[ib].ds.x = __float2half(d);
y[ib].ds.y = __float2half(sum);
}
static void quantize_row_q8_1_cuda(const half* x, void* vy, const int kx,
const int ky, cudaStream_t stream) {
const int64_t kx_padded = (kx + 512 - 1) / 512 * 512;
const int block_num_x =
(kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const dim3 num_blocks(block_num_x, ky, 1);
const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
}
torch::Tensor ggml_dequantize(torch::Tensor W, // quant weight
int64_t type, int64_t m, int64_t n) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(W));
auto options =
torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
at::Tensor DW = torch::empty({m, n}, options);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(type);
to_fp16_cuda((void*)W.data_ptr(), (half*)DW.data_ptr(), m * n, stream);
return DW;
}
torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, // quant weight
torch::Tensor X, // input
int64_t type, int64_t row) {
int col = X.sizes()[1];
const int padded = (col + 512 - 1) / 512 * 512;
const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
auto options =
torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
at::Tensor Y = torch::empty({1, row}, options);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
options = torch::TensorOptions().dtype(torch::kInt32).device(W.device());
at::Tensor quant_X = torch::empty({1, padded / 32 * 9}, options);
quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col, 1,
stream);
switch (type) {
case 2:
mul_mat_vec_q4_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 3:
mul_mat_vec_q4_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 6:
mul_mat_vec_q5_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 7:
mul_mat_vec_q5_1_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 8:
mul_mat_vec_q8_0_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 10:
mul_mat_vec_q2_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 11:
mul_mat_vec_q3_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 12:
mul_mat_vec_q4_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 13:
mul_mat_vec_q5_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 14:
mul_mat_vec_q6_K_q8_1_cuda((void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 16:
mul_mat_vec_iq2_xxs_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 17:
mul_mat_vec_iq2_xs_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 18:
mul_mat_vec_iq3_xxs_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 19:
mul_mat_vec_iq1_s_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 20:
mul_mat_vec_iq4_nl_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 21:
mul_mat_vec_iq3_s_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 22:
mul_mat_vec_iq2_s_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 23:
mul_mat_vec_iq4_xs_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
case 29:
mul_mat_vec_iq1_m_q8_1_cuda((void*)W.data_ptr(),
(void*)quant_X.data_ptr(),
(half*)Y.data_ptr(), col, row, stream);
break;
}
return Y;
}
torch::Tensor ggml_mul_mat_a8(torch::Tensor W, // quant weight
torch::Tensor X, // input
int64_t type, int64_t row) {
int col = X.sizes()[1];
int padded = (col + 512 - 1) / 512 * 512;
int batch = X.sizes()[0];
const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
auto options =
torch::TensorOptions().dtype(torch::kFloat16).device(W.device());
at::Tensor Y = torch::empty({batch, row}, options);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
options = torch::TensorOptions().dtype(torch::kInt32).device(W.device());
at::Tensor quant_X = torch::empty({batch, padded / 32 * 9}, options);
quantize_row_q8_1_cuda((half*)X.data_ptr(), (void*)quant_X.data_ptr(), col,
batch, stream);
switch (type) {
case 2:
ggml_mul_mat_q4_0_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 3:
ggml_mul_mat_q4_1_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 6:
ggml_mul_mat_q5_0_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 7:
ggml_mul_mat_q5_1_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 8:
ggml_mul_mat_q8_0_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 10:
ggml_mul_mat_q2_K_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 11:
ggml_mul_mat_q3_K_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 12:
ggml_mul_mat_q4_K_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 13:
ggml_mul_mat_q5_K_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
case 14:
ggml_mul_mat_q6_K_q8_1_cuda(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(), (half*)Y.data_ptr(),
col, row, batch, padded, row, stream);
break;
}
return Y;
}