2024-05-23 17:29:18 -04:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
2024-07-17 21:38:35 -04:00
|
|
|
from tests.kernels.quant_utils import ref_dynamic_per_token_quant
|
2024-09-11 15:52:19 -04:00
|
|
|
from tests.kernels.utils import opcheck
|
2024-07-17 21:38:35 -04:00
|
|
|
from vllm._custom_ops import scaled_int8_quant
|
2024-05-23 17:29:18 -04:00
|
|
|
|
|
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
2024-06-07 12:36:26 -04:00
|
|
|
HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192,
|
|
|
|
8193] # Arbitrary values for testing
|
2024-05-23 17:29:18 -04:00
|
|
|
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
|
|
|
|
SEEDS = [0]
|
|
|
|
SCALE = [0.1, 0.5, 0.8, 1.2, 2.1]
|
|
|
|
|
|
|
|
|
2024-09-11 15:52:19 -04:00
|
|
|
def opcheck_int8_quant(output, input, scale=None):
|
|
|
|
if scale is not None:
|
|
|
|
opcheck(torch.ops._C.static_scaled_int8_quant, (output, input, scale))
|
|
|
|
else:
|
|
|
|
scale = torch.empty((input.numel() // input.shape[-1], 1),
|
|
|
|
device=input.device,
|
|
|
|
dtype=torch.float32)
|
|
|
|
opcheck(torch.ops._C.dynamic_scaled_int8_quant, (output, input, scale))
|
|
|
|
|
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
@torch.inference_mode()
|
|
|
|
def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int,
|
|
|
|
dtype: torch.dtype, seed: int) -> None:
|
|
|
|
torch.random.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
|
|
|
|
|
2024-07-17 21:38:35 -04:00
|
|
|
# reference
|
|
|
|
ref_out, ref_scales = ref_dynamic_per_token_quant(x, torch.int8)
|
|
|
|
# kernel
|
|
|
|
ops_out, ops_scales = scaled_int8_quant(x)
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-08-15 21:24:04 -07:00
|
|
|
torch.testing.assert_close(ops_scales, ref_scales)
|
|
|
|
torch.testing.assert_close(
|
|
|
|
ops_out, ref_out, atol=1,
|
|
|
|
rtol=0.0) # big atol to account for rounding errors
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-09-11 15:52:19 -04:00
|
|
|
opcheck_int8_quant(ops_out, x)
|
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-05-23 17:29:18 -04:00
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
@pytest.mark.parametrize("scale", SCALE)
|
|
|
|
@torch.inference_mode()
|
2024-06-07 12:36:26 -04:00
|
|
|
def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int,
|
|
|
|
dtype: torch.dtype, seed: int,
|
|
|
|
scale: float) -> None:
|
2024-05-23 17:29:18 -04:00
|
|
|
torch.random.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
2024-06-07 12:36:26 -04:00
|
|
|
int8_traits = torch.iinfo(torch.int8)
|
|
|
|
|
2024-05-23 17:29:18 -04:00
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
|
2024-07-17 21:38:35 -04:00
|
|
|
scale = torch.tensor([scale], dtype=torch.float32, device="cuda")
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
out1 = (x / scale).round().clamp(int8_traits.min,
|
|
|
|
int8_traits.max).to(torch.int8)
|
2024-07-17 21:38:35 -04:00
|
|
|
out2, _ = scaled_int8_quant(x, scale)
|
2024-06-03 12:52:30 -04:00
|
|
|
|
2024-08-15 21:24:04 -07:00
|
|
|
torch.testing.assert_close(
|
|
|
|
out1, out2, atol=1,
|
|
|
|
rtol=0.0) # big atol to account for rounding errors
|
2024-09-11 15:52:19 -04:00
|
|
|
|
|
|
|
opcheck_int8_quant(out2, x, scale)
|