vllm/tests/kernels/test_cache.py

152 lines
5.5 KiB
Python
Raw Normal View History

2023-02-18 19:23:07 +00:00
import random
2023-09-06 08:57:38 +09:00
import pytest
2023-02-18 19:23:07 +00:00
import torch
from vllm._C import cache_ops
2023-02-18 19:23:07 +00:00
2023-09-06 08:57:38 +09:00
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [83] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
2023-09-06 08:57:38 +09:00
NUM_HEADS = [8] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
BLOCK_SIZES = [8, 16, 32]
NUM_BLOCKS = [1024, 36000] # Arbitrary values for testing
NUM_MAPPINGS = [256] # Arbitrary values for testing
2023-09-06 08:57:38 +09:00
SEEDS = [0]
DEVICES = [i for i in range(1 if torch.cuda.device_count() == 1 else 2)]
2023-09-06 08:57:38 +09:00
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
2023-09-06 08:57:38 +09:00
def test_copy_blocks(
kv_cache_factory,
num_mappings: int,
num_layers: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
2023-09-06 08:57:38 +09:00
seed: int,
device: int,
) -> None:
2023-09-06 08:57:38 +09:00
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f"cuda:{device}"
2023-09-06 08:57:38 +09:00
# Generate random block mappings where each source block is mapped to two
# destination blocks.
assert 2 * num_mappings <= num_blocks
src_blocks = random.sample(range(num_blocks), num_mappings)
remainig_blocks = list(set(range(num_blocks)) - set(src_blocks))
2023-09-06 08:57:38 +09:00
dst_blocks = random.sample(remainig_blocks, 2 * num_mappings)
block_mapping = {}
for i in range(num_mappings):
src = src_blocks[i]
dst1 = dst_blocks[2 * i]
dst2 = dst_blocks[2 * i + 1]
block_mapping[src] = [dst1, dst2]
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size,
num_layers, num_heads,
head_size, dtype, seed, gpu_id)
2023-09-06 08:57:38 +09:00
# Clone the KV caches.
cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
# Call the copy blocks kernel.
cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
2023-09-06 08:57:38 +09:00
# Run the reference implementation.
for src, dsts in block_mapping.items():
for dst in dsts:
2023-09-06 08:57:38 +09:00
for cloned_key_cache in cloned_key_caches:
cloned_key_cache[dst].copy_(cloned_key_cache[src])
2023-09-06 08:57:38 +09:00
for cloned_value_cache in cloned_value_caches:
cloned_value_cache[dst].copy_(cloned_value_cache[src])
# Compare the results.
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
assert torch.allclose(key_cache, cloned_key_cache)
for value_cache, cloned_value_cache in zip(value_caches,
cloned_value_caches):
assert torch.allclose(value_cache, cloned_value_cache)
2023-09-06 08:57:38 +09:00
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
2023-09-06 08:57:38 +09:00
def test_reshape_and_cache(
kv_cache_factory,
2023-02-18 19:23:07 +00:00
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
2023-09-06 08:57:38 +09:00
seed: int,
device: int,
2023-02-18 19:23:07 +00:00
) -> None:
2023-09-06 08:57:38 +09:00
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
gpu_id = f"cuda:{device}"
2023-09-06 08:57:38 +09:00
# Create a random slot mapping.
2023-02-18 19:23:07 +00:00
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device=gpu_id)
2023-02-18 19:23:07 +00:00
qkv = torch.randn(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device=gpu_id)
2023-04-02 00:30:17 -07:00
_, key, value = qkv.unbind(dim=1)
2023-09-06 08:57:38 +09:00
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size, dtype,
seed, gpu_id)
2023-09-06 08:57:38 +09:00
key_cache, value_cache = key_caches[0], value_caches[0]
2023-02-18 19:23:07 +00:00
2023-09-06 08:57:38 +09:00
# Clone the KV caches.
cloned_key_cache = key_cache.clone()
2023-02-18 19:23:07 +00:00
cloned_value_cache = value_cache.clone()
2023-09-06 08:57:38 +09:00
# Call the reshape_and_cache kernel.
cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
slot_mapping)
2023-02-18 19:23:07 +00:00
2023-09-06 08:57:38 +09:00
# Run the reference implementation.
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
2023-09-06 08:57:38 +09:00
block_indicies = block_indicies.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets = block_offsets.cpu().tolist()
2023-02-18 19:23:07 +00:00
for i in range(num_tokens):
2023-09-06 08:57:38 +09:00
block_idx = block_indicies[i]
block_offset = block_offsets[i]
2023-02-18 19:23:07 +00:00
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
2023-02-18 19:23:07 +00:00
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)