2025-01-29 11:38:08 +08:00
(reasoning-outputs)=
# Reasoning Outputs
vLLM offers support for reasoning models like [DeepSeek R1 ](https://huggingface.co/deepseek-ai/DeepSeek-R1 ), which are designed to generate outputs containing both reasoning steps and final conclusions.
2025-03-26 08:28:07 -06:00
Reasoning models return an additional `reasoning_content` field in their outputs, which contains the reasoning steps that led to the final conclusion. This field is not present in the outputs of other models.
2025-01-29 11:38:08 +08:00
## Supported Models
vLLM currently supports the following reasoning models:
2025-03-24 05:00:07 +08:00
| Model Series | Parser Name | Structured Output Support | Tool Calling |
|--------------|-------------|------------------|-------------|
| [DeepSeek R1 series ](https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d ) | `deepseek_r1` | `guided_json` , `guided_regex` | ❌ |
| [QwQ-32B ](https://huggingface.co/Qwen/QwQ-32B ) | `deepseek_r1` | `guided_json` , `guided_regex` | ✅ |
2025-03-26 08:28:07 -06:00
| [IBM Granite 3.2 language models ](https://huggingface.co/collections/ibm-granite/granite-32-language-models-67b3bc8c13508f6d064cff9a ) | `granite` | ❌ | ❌ |
- IBM Granite 3.2 reasoning is disabled by default; to enable it, you must also pass `thinking=True` in your `chat_template_kwargs` .
2025-01-29 11:38:08 +08:00
## Quickstart
To use reasoning models, you need to specify the `--enable-reasoning` and `--reasoning-parser` flags when making a request to the chat completion endpoint. The `--reasoning-parser` flag specifies the reasoning parser to use for extracting reasoning content from the model output.
```bash
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
--enable-reasoning --reasoning-parser deepseek_r1
```
Next, make a request to the model that should return the reasoning content in the response.
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
2025-03-26 08:28:07 -06:00
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
2025-01-29 11:38:08 +08:00
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content:", reasoning_content)
print("content:", content)
```
The `reasoning_content` field contains the reasoning steps that led to the final conclusion, while the `content` field contains the final conclusion.
## Streaming chat completions
Streaming chat completions are also supported for reasoning models. The `reasoning_content` field is available in the `delta` field in [chat completion response chunks ](https://platform.openai.com/docs/api-reference/chat/streaming ).
```json
{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"reasoning_content": "is",
},
"logprobs": null,
"finish_reason": null
}
]
}
```
2025-03-06 21:20:37 +08:00
OpenAI Python client library does not officially support `reasoning_content` attribute for streaming output. But the client support extra attributes in the response. You can use `hasattr` to check if the `reasoning_content` attribute is present in the response. For example:
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
2025-03-26 08:28:07 -06:00
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
2025-03-06 21:20:37 +08:00
stream = client.chat.completions.create(model=model,
messages=messages,
stream=True)
print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
elif hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
print(content, end="", flush=True)
```
Remember to check whether the `reasoning_content` exists in the response before accessing it. You could checkout the [example ](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/openai_chat_completion_with_reasoning_streaming.py ).
2025-03-03 03:49:42 +08:00
2025-03-06 11:49:20 +08:00
## Structured output
2025-03-29 11:46:57 +08:00
The reasoning content is also available in the structured output. The structured output engine like `xgrammar` will use the reasoning content to generate structured output. It is only supported in v0 engine now.
```bash
VLLM_USE_V1=0 vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
--enable-reasoning --reasoning-parser deepseek_r1
```
Please note that the `VLLM_USE_V1` environment variable must be set to `0` to use the v0 engine.
2025-03-06 11:49:20 +08:00
```python
from openai import OpenAI
from pydantic import BaseModel
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
class People(BaseModel):
name: str
age: int
json_schema = People.model_json_schema()
prompt = ("Generate a JSON with the name and age of one random person.")
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_json": json_schema},
)
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)
```
2025-03-24 05:00:07 +08:00
## Tool Calling
The reasoning content is also available when both tool calling and the reasoning parser are enabled. Additionally, tool calling only parses functions from the `content` field, not from the `reasoning_content` .
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
```
For more examples, please refer to < gh-file:examples / online_serving / openai_chat_completion_tool_calls_with_reasoning . py > .
2025-03-03 03:49:42 +08:00
## Limitations
- The reasoning content is only available for online serving's chat completion endpoint (`/v1/chat/completions` ).
2025-01-29 11:38:08 +08:00
## How to support a new reasoning model
You can add a new `ReasoningParser` similar to `vllm/entrypoints/openai/reasoning_parsers/deepseek_r1_reasoning_parser.py` .
```python
# import the required packages
from vllm.entrypoints.openai.reasoning_parsers.abs_reasoning_parsers import (
ReasoningParser, ReasoningParserManager)
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)
# define a reasoning parser and register it to vllm
# the name list in register_module can be used
# in --reasoning-parser.
@ReasoningParserManager .register_module(["example"])
class ExampleParser(ReasoningParser):
def __init__ (self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Instance method that should be implemented for extracting reasoning
from an incomplete response; for use when handling reasoning calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
"""
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
2025-03-03 01:34:51 +00:00
) -> tuple[Optional[str], Optional[str]]:
2025-01-29 11:38:08 +08:00
"""
Extract reasoning content from a complete model-generated string.
Used for non-streaming responses where we have the entire model response
available before sending to the client.
Parameters:
model_output: str
The model-generated string to extract reasoning content from.
request: ChatCompletionRequest
The request object that was used to generate the model_output.
Returns:
2025-03-03 01:34:51 +00:00
tuple[Optional[str], Optional[str]]
2025-01-29 11:38:08 +08:00
A tuple containing the reasoning content and the content.
"""
```
2025-03-03 03:49:42 +08:00
Additionally, to enable structured output, you'll need to create a new `Reasoner` similar to the one in `vllm/model_executor/guided_decoding/reasoner/deepseek_reasoner.py` .
```python
@dataclass
class DeepSeekReasoner(Reasoner):
"""
Reasoner for DeepSeek R series models.
"""
start_token_id: int
end_token_id: int
start_token: str = "< think > "
end_token: str = "< / think > "
@classmethod
def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
return cls(start_token_id=tokenizer.encode(
"< think > ", add_special_tokens=False)[0],
end_token_id=tokenizer.encode("< / think > ",
add_special_tokens=False)[0])
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.end_token_id in input_ids
2025-03-06 11:49:20 +08:00
...
2025-03-03 03:49:42 +08:00
```
2025-03-06 11:49:20 +08:00
The structured output engine like `xgrammar` will use `end_token_id` to check if the reasoning content is present in the model output and skip the structured output if it is the case.
2025-03-03 03:49:42 +08:00
Finally, you can enable reasoning for the model by using the `--enable-reasoning` and `--reasoning-parser` flags.
2025-01-29 11:38:08 +08:00
```bash
vllm serve < model_tag > \
--enable-reasoning --reasoning-parser example
```