vllm/tests/async_engine/test_async_llm_engine.py

151 lines
4.2 KiB
Python
Raw Normal View History

import asyncio
import os
from dataclasses import dataclass
import pytest
import torch
from vllm import SamplingParams
from vllm.config import ParallelConfig
from vllm.engine.async_llm_engine import AsyncEngineArgs, AsyncLLMEngine
from ..utils import wait_for_gpu_memory_to_clear
@dataclass
class RequestOutput:
request_id: int
finished: bool = False
class MockEngine:
def __init__(self):
self.step_calls = 0
self.add_request_calls = 0
self.abort_request_calls = 0
self.request_id = None
# Ugly, remove dependency when possible
self.parallel_config = ParallelConfig(1, 1, False)
async def step_async(self, virtual_engine):
# PP size is 1, ignore virtual engine
self.step_calls += 1
return [RequestOutput(
request_id=self.request_id)] if self.request_id else []
async def process_model_inputs_async(self, *args, **kwargs):
pass
async def stop_remote_worker_execution_loop_async(self):
pass
def generate(self, request_id):
self.request_id = request_id
def stop_generating(self):
self.request_id = None
def add_request(self, **kwargs):
del kwargs # Unused
self.add_request_calls += 1
print(f'Request calls: {self.add_request_calls}')
async def add_request_async(self, **kwargs):
self.add_request_calls += 1
return
def abort_request(self, request_id):
del request_id # Unused
self.abort_request_calls += 1
def has_unfinished_requests(self):
return self.request_id is not None
def has_unfinished_requests_for_virtual_engine(self, virtual_engine):
return self.request_id is not None
class MockAsyncLLMEngine(AsyncLLMEngine):
def _init_engine(self, *args, **kwargs):
return MockEngine()
@pytest.mark.asyncio
async def test_new_requests_event():
engine = MockAsyncLLMEngine(worker_use_ray=False, engine_use_ray=False)
engine.start_background_loop()
await asyncio.sleep(0.01)
assert engine.engine.step_calls == 0
await engine.add_request("1", "", None)
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 1
assert engine.engine.step_calls == 1
await engine.add_request("2", "", None)
engine.engine.generate("2")
await asyncio.sleep(0)
await asyncio.sleep(0)
await asyncio.sleep(0)
assert engine.engine.add_request_calls == 2
assert engine.engine.step_calls >= 2
await asyncio.sleep(0.001)
assert engine.engine.step_calls >= 3
engine.engine.stop_generating()
await asyncio.sleep(0.001)
old_step_calls = engine.engine.step_calls
await asyncio.sleep(0.001)
assert engine.engine.step_calls == old_step_calls
await engine.add_request("3", "", None)
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 3
assert engine.engine.step_calls == old_step_calls + 1
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 3
assert engine.engine.step_calls == old_step_calls + 1
# Allow deprecated engine_use_ray to not raise exception
os.environ["VLLM_ALLOW_ENGINE_USE_RAY"] = "1"
engine = MockAsyncLLMEngine(worker_use_ray=True, engine_use_ray=True)
assert engine.get_model_config() is not None
assert engine.get_tokenizer() is not None
assert engine.get_decoding_config() is not None
os.environ.pop("VLLM_ALLOW_ENGINE_USE_RAY")
def test_asyncio_run():
wait_for_gpu_memory_to_clear(
devices=list(range(torch.cuda.device_count())),
threshold_bytes=2 * 2**30,
timeout_s=60,
)
engine = AsyncLLMEngine.from_engine_args(
AsyncEngineArgs(model="facebook/opt-125m"))
async def run(prompt: str):
sampling_params = SamplingParams(
temperature=0,
max_tokens=32,
)
async for output in engine.generate(prompt,
sampling_params,
request_id=prompt):
final_output = output
return final_output
async def generate():
return await asyncio.gather(
run("test0"),
run("test1"),
)
results = asyncio.run(generate())
assert len(results) == 2