309 lines
12 KiB
Python
Raw Normal View History

# coding=utf-8
# Copyright 2023 The CacheFlow team.
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
#
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2023-02-09 11:25:37 +00:00
"""1D OPT model compatible with HuggingFace weights."""
2023-02-23 09:31:55 +00:00
from typing import Dict, List, Optional, Tuple
2023-02-09 11:25:37 +00:00
import torch
from torch import nn
from transformers import OPTConfig
2023-05-09 15:30:12 -07:00
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
2023-03-22 04:45:42 +08:00
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
2023-05-09 15:30:12 -07:00
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
2023-02-23 09:31:55 +00:00
KVCache = Tuple[torch.Tensor, torch.Tensor]
2023-02-09 11:25:37 +00:00
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.LongTensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
) -> None:
super().__init__()
self.embed_dim = embed_dim
2023-03-22 04:45:42 +08:00
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim ** -0.5
2023-02-09 11:25:37 +00:00
2023-04-02 15:23:29 +08:00
self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
gather_output=False,
perform_initialization=False)
2023-03-22 04:45:42 +08:00
self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
input_is_parallel=True,
perform_initialization=False)
self.attn = GPTCacheFlowAttention(scale=self.scaling)
2023-02-23 09:31:55 +00:00
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
2023-04-02 15:23:29 +08:00
qkv, _ = self.qkv_proj(hidden_states)
2023-04-02 00:30:17 -07:00
q, k, v = qkv.chunk(chunks=3, dim=-1)
2023-02-23 09:31:55 +00:00
key_cache, value_cache = kv_cache
attn_output = self.attn(
q, k, v, key_cache, value_cache, input_metadata, cache_event)
2023-03-22 04:45:42 +08:00
output, _ = self.out_proj(attn_output)
2023-02-09 11:25:37 +00:00
return output
2023-04-02 00:30:17 -07:00
2023-02-09 11:25:37 +00:00
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
2023-03-22 04:45:42 +08:00
self.config = config
2023-02-09 11:25:37 +00:00
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
)
self.do_layer_norm_before = config.do_layer_norm_before
assert config.activation_function == 'relu'
self.activation_fn = nn.ReLU()
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
2023-03-22 04:45:42 +08:00
self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
bias=config.enable_bias,
gather_output=False,
perform_initialization=False)
self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
bias=config.enable_bias,
input_is_parallel=True,
perform_initialization=False)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
2023-02-09 11:25:37 +00:00
2023-02-23 09:31:55 +00:00
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
2023-02-09 11:25:37 +00:00
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
2023-02-23 09:31:55 +00:00
hidden_states = self.self_attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event)
2023-02-09 11:25:37 +00:00
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
2023-03-22 04:45:42 +08:00
hidden_states, _ = self.fc1(hidden_states)
2023-02-09 11:25:37 +00:00
hidden_states = self.activation_fn(hidden_states)
2023-03-22 04:45:42 +08:00
hidden_states, _ = self.fc2(hidden_states)
2023-02-09 11:25:37 +00:00
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
2023-03-22 04:45:42 +08:00
class OPTDecoder(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config: OPTConfig):
2023-03-22 04:45:42 +08:00
super().__init__()
self.config = config
2023-02-09 11:25:37 +00:00
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
2023-03-22 04:45:42 +08:00
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.word_embed_proj_dim,
perform_initialization=False)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
2023-02-09 11:25:37 +00:00
2023-03-22 04:45:42 +08:00
# Project out & in will be replicated if they exist.
2023-02-09 11:25:37 +00:00
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
2023-02-09 11:25:37 +00:00
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
2023-02-23 09:31:55 +00:00
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
hidden_states, kv_caches[i], input_metadata, cache_event)
2023-02-09 11:25:37 +00:00
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
return hidden_states
2023-03-22 04:45:42 +08:00
class OPTModel(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config: OPTConfig):
2023-03-22 04:45:42 +08:00
super().__init__()
2023-02-09 11:25:37 +00:00
self.decoder = OPTDecoder(config)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
2023-02-09 11:25:37 +00:00
) -> torch.Tensor:
2023-02-23 09:31:55 +00:00
return self.decoder(
input_ids, positions, kv_caches, input_metadata, cache_events)
2023-02-09 11:25:37 +00:00
2023-03-22 04:45:42 +08:00
class OPTForCausalLM(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config):
2023-03-22 04:45:42 +08:00
super().__init__()
self.config = config
2023-02-09 11:25:37 +00:00
self.model = OPTModel(config)
2023-03-22 04:45:42 +08:00
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.model.decoder.embed_tokens.weight
2023-05-04 02:59:56 -07:00
self.sampler = Sampler(config.vocab_size)
2023-02-09 11:25:37 +00:00
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
2023-02-23 09:31:55 +00:00
hidden_states = self.model(
input_ids, positions, kv_caches, input_metadata, cache_events)
2023-02-23 20:30:12 +00:00
next_tokens = self.sampler(
2023-03-22 04:45:42 +08:00
self.lm_head_weight, hidden_states, input_metadata)
2023-02-23 09:31:55 +00:00
return next_tokens
2023-03-22 04:45:42 +08:00
2023-04-02 15:23:29 +08:00
_column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
2023-03-22 04:45:42 +08:00
_row_parallel_weights = ["out_proj.weight", "fc2.weight"]
def load_weights(self, model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
2023-03-22 04:45:42 +08:00
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, use_np_cache):
if "lm_head.weight" in name:
2023-03-22 04:45:42 +08:00
continue
if name.startswith("decoder."):
name = "model." + name
is_attention_weight = False
for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
if att_weight_name not in name:
continue
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
2023-04-02 15:23:29 +08:00
shard_size = param.shape[0] // 3
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id
:shard_size * (stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
2023-05-09 15:30:12 -07:00
self._row_parallel_weights,
tensor_model_parallel_rank)