vllm/tests/distributed/test_basic_distributed_correctness.py

60 lines
1.9 KiB
Python
Raw Normal View History

"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
2024-03-27 00:33:26 -07:00
vLLM will allocate all the available memory, so we need to run the tests one
by one. The solution is to pass arguments (model name) by environment
variables.
Run:
```sh
TEST_DIST_MODEL=facebook/opt-125m pytest \
test_basic_distributed_correctness.py
TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf \
test_basic_distributed_correctness.py
```
"""
2024-03-27 00:33:26 -07:00
import os
import pytest
import torch
MODELS = [
2024-03-27 00:33:26 -07:00
os.environ["TEST_DIST_MODEL"],
]
VLLM_ATTENTION_BACKEND = "VLLM_ATTENTION_BACKEND"
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [5])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
enforce_eager = False
backend_by_env_var = os.getenv(VLLM_ATTENTION_BACKEND)
if backend_by_env_var == "FLASHINFER":
enforce_eager = True
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
del hf_model
vllm_model = vllm_runner(model,
dtype=dtype,
tensor_parallel_size=2,
enforce_eager=enforce_eager)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
del vllm_model
for i in range(len(example_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_outputs[i]
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")