368 lines
12 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # noqa: E501
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from examples/quantization/hf_ptq.py
"""
import argparse
import copy
import json
import random
import time
import ammo.torch.quantization as atq
import numpy as np
import torch
from ammo.torch.export import export_model_config
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
RAND_SEED = 1234
MAX_SEQ_LEN = 2048
EMPTY_CFG = {
"quant_cfg": {
"*weight_quantizer": {
"enable": False,
},
"*input_quantizer": {
"enable": False
},
"*lm_head*": {
"enable": False
},
"*output_layer*": {
"enable": False
},
"default": {
"enable": False
},
},
"algorithm": "max",
}
KV_CACHE_CFG = {
"*.query_key_value.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.Wqkv.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.W_pack.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.c_attn.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.k_proj.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
"*.v_proj.output_quantizer": {
"num_bits": 8,
"axis": None,
"enable": True
},
}
QUANT_CFG_CHOICES = {
"int8_sq": atq.INT8_SMOOTHQUANT_CFG,
"fp8": atq.FP8_DEFAULT_CFG,
"int4_awq": atq.INT4_AWQ_CFG,
"w4a8_awq": atq.W4A8_AWQ_BETA_CFG,
"int8_wo": EMPTY_CFG,
"int4_wo": EMPTY_CFG,
"full_prec": EMPTY_CFG,
}
MODEL_NAME_PATTERN_MAP = {
"GPT2": "gpt2",
"Xverse": "llama",
"Llama": "llama",
"Mistral": "llama",
"GPTJ": "gptj",
"FalconForCausalLM": "falcon",
"RWForCausalLM": "falcon",
"baichuan": "baichuan",
"MPT": "mpt",
"Bloom": "bloom",
"ChatGLM": "chatglm",
"QWen": "qwen",
}
def get_tokenizer(ckpt_path, max_seq_len=MAX_SEQ_LEN, model_type=None):
print(f"Initializing tokenizer from {ckpt_path}")
tokenizer = AutoTokenizer.from_pretrained(
ckpt_path,
model_max_length=max_seq_len,
padding_side="left",
trust_remote_code=True,
)
if model_type and model_type == "qwen":
# qwen use token id 151643 as pad and eos tokens
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643)
tokenizer.eos_token = tokenizer.convert_ids_to_tokens(151643)
# can't set attribute 'pad_token' for "<unk>"
if tokenizer.pad_token != "<unk>":
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
assert (tokenizer.pad_token
is not None), f"Pad token for {model_type} cannot be set!"
return tokenizer
def get_model(ckpt_path, dtype="fp16", device="cuda"):
print(f"Initializing model from {ckpt_path}")
if dtype == "bf16" or dtype == "bfloat16":
dtype = torch.bfloat16
elif dtype == "fp16" or dtype == "float16":
dtype = torch.float16
elif dtype == "fp32" or dtype == "float32":
dtype = torch.float32
else:
raise NotImplementedError(f"Unknown dtype {dtype}")
# model_kwargs = {"torch_dtype": dtype}
model_kwargs = {"torch_dtype": "auto"}
model = AutoModelForCausalLM.from_pretrained(ckpt_path,
device_map="auto",
**model_kwargs,
trust_remote_code=True)
model.eval()
model_dtype = next(model.parameters()).dtype
if dtype != model_dtype:
print("[TensorRT-LLM][WARNING] The manually set model data type is "
f"{dtype}, but the data type of the HuggingFace model is "
f"{model_dtype}.")
return model
def get_model_type(model):
for k, v in MODEL_NAME_PATTERN_MAP.items():
if k.lower() in type(model).__name__.lower():
return v
return None
def get_calib_dataloader(data="cnn_dailymail",
tokenizer=None,
batch_size=1,
calib_size=512,
block_size=512,
device=None):
print("Loading calibration dataset")
if data == "pileval":
dataset = load_dataset(
"json",
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
split="train")
dataset = dataset["text"][:calib_size]
elif data == "cnn_dailymail":
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
dataset = dataset["article"][:calib_size]
else:
raise NotImplementedError
batch_encoded = tokenizer.batch_encode_plus(dataset,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=block_size)
if device:
batch_encoded = batch_encoded.to(device)
batch_encoded = batch_encoded["input_ids"]
calib_dataloader = DataLoader(batch_encoded,
batch_size=batch_size,
shuffle=False)
return calib_dataloader
def quantize_model(model, quant_cfg, calib_dataloader=None):
def calibrate_loop():
if calib_dataloader is None:
return
"""Adjusts weights and scaling factors based on selected algorithms."""
for idx, data in enumerate(calib_dataloader):
print(f"Calibrating batch {idx}")
model(data)
print("Starting quantization...")
start_time = time.time()
atq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
end_time = time.time()
print("Quantization done. Total time used: {:.2f} s.".format(end_time -
start_time))
return model
def main(args):
if not torch.cuda.is_available():
raise OSError("GPU is required for inference.")
random.seed(RAND_SEED)
np.random.seed(RAND_SEED)
model = get_model(args.model_dir, args.dtype, args.device)
model_type = get_model_type(model)
tokenizer = get_tokenizer(args.model_dir, model_type=model_type)
if args.qformat in ["full_prec", "int8_wo", "int4_wo"
] and args.kv_cache_dtype is None:
print(f"No quantization applied, export {args.dtype} model")
else:
if "awq" in args.qformat:
if args.calib_size > 32:
print("AWQ calibration could take longer with calib_size = "
f"{args.calib_size}, Using calib_size=32 instead")
args.calib_size = 32
print("\nAWQ calibration could take longer than other calibration "
"methods. Please increase the batch size to speed up the "
"calibration process. Batch size can be set by adding the "
"argument --batch_size <batch_size> to the command line.\n")
calib_dataloader = get_calib_dataloader(
tokenizer=tokenizer,
batch_size=args.batch_size,
calib_size=args.calib_size,
device=args.device,
)
if args.qformat in QUANT_CFG_CHOICES:
quant_cfg = QUANT_CFG_CHOICES[args.qformat]
else:
raise ValueError(
f"Unsupported quantization format: {args.qformat}")
if "awq" in args.qformat:
quant_cfg = copy.deepcopy(QUANT_CFG_CHOICES[args.qformat])
weight_quantizer = quant_cfg["quant_cfg"][
"*weight_quantizer"] # type: ignore
if isinstance(weight_quantizer, list):
weight_quantizer = weight_quantizer[0]
weight_quantizer["block_sizes"][-1] = args.awq_block_size
if args.kv_cache_dtype is not None:
if args.kv_cache_dtype == "fp8":
for value in KV_CACHE_CFG.values():
value.update({"num_bits": (4, 3)}) # type: ignore
quant_cfg["quant_cfg"].update(KV_CACHE_CFG) # type: ignore
print(quant_cfg)
model = quantize_model(model, quant_cfg, calib_dataloader)
with torch.inference_mode():
if model_type is None:
print(f"Unknown model type {type(model).__name__}. Continue "
"exporting...")
model_type = f"unknown:{type(model).__name__}"
export_path = args.output_dir
start_time = time.time()
if args.qformat == "int4_awq" and model_type == "qwen":
torch.save(model.state_dict(), export_path)
else:
export_npz = (model_type not in [
'gptj', 'falcon', 'chatglm', 'mpt', 'llama', 'baichuan'
])
# export safetensors
export_model_config(
model,
model_type,
getattr(torch, args.dtype),
export_dir=export_path,
inference_tensor_parallel=args.tp_size,
inference_pipeline_parallel=args.pp_size,
# export_tensorrt_llm_config=(not export_npz),
export_tensorrt_llm_config=False,
export_npz=export_npz)
# Workaround for wo quantization
if args.qformat in ["int8_wo", "int4_wo", "full_prec"]:
with open(f"{export_path}/config.json") as f:
tensorrt_llm_config = json.load(f)
if args.qformat == "int8_wo":
tensorrt_llm_config["quantization"]["quant_algo"] = 'W8A16'
elif args.qformat == "int4_wo":
tensorrt_llm_config["quantization"]["quant_algo"] = 'W4A16'
else:
tensorrt_llm_config["quantization"]["quant_algo"] = None
with open(f"{export_path}/config.json", "w") as f:
json.dump(tensorrt_llm_config, f, indent=4)
end_time = time.time()
print("Quantized model exported to {} \nTotal time used {:.2f} s.".
format(export_path, end_time - start_time))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--model-dir",
help="Specify where the HuggingFace model is",
required=True)
parser.add_argument("--device", default="cuda")
parser.add_argument("--dtype", help="Model data type.", default="float16")
parser.add_argument(
"--qformat",
help="Quantization format.",
default="full_prec",
choices=[
"fp8", "int8_sq", "int4_awq", "w4a8_awq", "int8_wo", "int4_wo",
"full_prec"
],
)
parser.add_argument("--batch-size",
help="Batch size for calibration.",
type=int,
default=1)
parser.add_argument("--calib-size",
help="Number of samples for calibration.",
type=int,
default=512)
parser.add_argument("--output-dir", default="exported_model")
parser.add_argument("--tp-size", type=int, default=1)
parser.add_argument("--pp-size", type=int, default=1)
parser.add_argument("--awq-block-size", type=int, default=128)
parser.add_argument("--kv-cache-dtype",
help="KV Cache dtype.",
default=None,
choices=["int8", "fp8", None])
args = parser.parse_args()
main(args)