vllm/tests/lora/conftest.py

174 lines
5.1 KiB
Python
Raw Normal View History

import contextlib
import gc
import tempfile
from collections import OrderedDict
2024-03-25 23:59:47 +09:00
from unittest.mock import MagicMock, patch
import pytest
import ray
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
import vllm
from vllm.config import LoRAConfig
from vllm.distributed import destroy_model_parallel, initialize_model_parallel
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
2024-03-25 23:59:47 +09:00
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
2024-03-25 23:59:47 +09:00
from vllm.model_executor.model_loader import get_model
def cleanup():
destroy_model_parallel()
with contextlib.suppress(AssertionError):
torch.distributed.destroy_process_group()
gc.collect()
torch.cuda.empty_cache()
ray.shutdown()
@pytest.fixture(autouse=True)
def cleanup_fixture():
yield
cleanup()
@pytest.fixture
def dist_init():
if not torch.distributed.is_initialized():
temp_file = tempfile.mkstemp()[1]
torch.distributed.init_process_group(
backend="nccl",
world_size=1,
rank=0,
init_method=f"file://{temp_file}",
)
torch.distributed.all_reduce(torch.zeros(1).cuda())
initialize_model_parallel(1, 1)
yield
cleanup()
@pytest.fixture
def dist_init_torch_only():
if torch.distributed.is_initialized():
return
temp_file = tempfile.mkstemp()[1]
torch.distributed.init_process_group(
backend="nccl",
world_size=1,
rank=0,
init_method=f"file://{temp_file}",
)
@pytest.fixture
def dummy_model() -> nn.Module:
model = nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(764, 100)),
("dense2", RowParallelLinear(100, 50)),
(
"layer1",
nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(100, 10)),
("dense2", RowParallelLinear(10, 50)),
])),
),
("act2", nn.ReLU()),
("output", ColumnParallelLinear(50, 10)),
("outact", nn.Sigmoid()),
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
return model
@pytest.fixture
def dummy_model_gate_up() -> nn.Module:
model = nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(764, 100)),
("dense2", RowParallelLinear(100, 50)),
(
"layer1",
nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(100, 10)),
("dense2", RowParallelLinear(10, 50)),
])),
),
("act2", nn.ReLU()),
("gate_up_proj", MergedColumnParallelLinear(50, [5, 5])),
("outact", nn.Sigmoid()),
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
return model
@pytest.fixture(scope="session")
def sql_lora_files():
return snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
@pytest.fixture(scope="session")
def mixtral_lora_files():
return snapshot_download(repo_id="terrysun/mixtral-lora-adapter")
2024-02-28 13:03:28 -08:00
@pytest.fixture(scope="session")
def gemma_lora_files():
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
@pytest.fixture(scope="session")
def chatglm3_lora_files():
return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider")
@pytest.fixture(scope="session")
def baichuan_lora_files():
return snapshot_download(repo_id="jeeejeee/baichuan7b-text2sql-spider")
@pytest.fixture(scope="session")
def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
@pytest.fixture
def llama_2_7b_engine_extra_embeddings() -> nn.Module:
cleanup()
get_model_old = get_model
def get_model_patched(*, model_config, device_config, **kwargs):
kwargs["lora_config"] = LoRAConfig(max_loras=4, max_lora_rank=8)
return get_model_old(model_config=model_config,
device_config=device_config,
**kwargs)
with patch("vllm.worker.model_runner.get_model", get_model_patched):
engine = vllm.LLM("meta-llama/Llama-2-7b-hf", enable_lora=False)
yield engine.llm_engine
del engine
cleanup()
@pytest.fixture
def llama_2_7b_model_extra_embeddings(
llama_2_7b_engine_extra_embeddings) -> nn.Module:
yield (llama_2_7b_engine_extra_embeddings.model_executor.driver_worker.
model_runner.model)