1150 lines
44 KiB
Python
Raw Normal View History

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
from functools import lru_cache, partial
from typing import (Any, Callable, Iterable, List, Literal, Mapping, Optional,
Tuple, Type, TypedDict, Union)
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from PIL import Image
from transformers.image_utils import (get_image_size,
infer_channel_dimension_format,
to_numpy_array)
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
Qwen2VLConfig, Qwen2VLVisionConfig)
from transformers.models.qwen2_vl.image_processing_qwen2_vl import (
make_batched_images, make_batched_videos, smart_resize)
from vllm.attention import AttentionMetadata
from vllm.attention.selector import _Backend
from vllm.config import CacheConfig, MultiModalConfig
from vllm.distributed import get_pp_group, parallel_state
from vllm.distributed import utils as dist_utils
2024-10-16 18:49:37 +08:00
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, InputContext,
token_inputs)
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.activation import QuickGELU
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.qwen2 import Qwen2Model
from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalDataDict,
MultiModalInputs)
from vllm.multimodal.base import MultiModalData
from vllm.multimodal.image import cached_get_image_processor
from vllm.sequence import IntermediateTensors, SequenceData
from vllm.transformers_utils.config import uses_mrope
from vllm.transformers_utils.processor import get_processor
from .interfaces import SupportsMultiModal, SupportsPP
from .utils import (PPMissingLayer, get_vit_attn_backend,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory)
logger = init_logger(__name__)
# === Vision Inputs === #
class Qwen2VLImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""Shape:
`(num_patches, num_channels * patch_size * patch_size)`
"""
image_grid_thw: torch.Tensor
"""Shape: `(num_images, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
class Qwen2VLImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
"""
Qwen2VLImageInputs = Union[Qwen2VLImagePixelInputs,
Qwen2VLImageEmbeddingInputs]
class Qwen2VLVideoInputs(TypedDict):
pixel_values_videos: torch.Tensor
"""Shape:
`(num_patches,
num_channels * temporal_patch_size * patch_size * patch_size)`
"""
video_grid_thw: torch.Tensor
"""Shape: `(num_videos, 3)`
This should be in `(grid_t, grid_h, grid_w)` format.
"""
# === Vision Encoder === #
class Qwen2VisionMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int = None,
act_layer: Type[nn.Module] = QuickGELU,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.fc1 = ColumnParallelLinear(in_features,
hidden_features,
quant_config=quant_config)
self.act = act_layer()
self.fc2 = RowParallelLinear(hidden_features,
in_features,
quant_config=quant_config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_parallel, _ = self.fc1(x)
x_parallel = self.act(x_parallel)
x, _ = self.fc2(x_parallel)
return x
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(torch.stack((-x2, x1), dim=-1),
"... d two -> ... (d two)",
two=2)
def apply_rotary_emb_torch(x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
interleaved: bool = False) -> torch.Tensor:
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos = repeat(
cos,
"... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
sin = repeat(
sin,
"... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
return torch.cat(
[
x[..., :ro_dim] * cos +
rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]
],
dim=-1,
)
def apply_rotary_pos_emb_vision(t: torch.Tensor,
freqs: torch.Tensor) -> torch.Tensor:
t_ = t.float()
cos = freqs.cos()
sin = freqs.sin()
output = apply_rotary_emb_torch(t_, cos, sin).type_as(t)
return output
class Qwen2VisionAttention(nn.Module):
def __init__(
self,
embed_dim: Optional[int] = None,
num_heads: Optional[int] = None,
projection_size: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
# Per attention head and per partition values.
world_size = parallel_state.get_tensor_model_parallel_world_size()
self.hidden_size_per_attention_head = dist_utils.divide(
projection_size, num_heads)
self.num_attention_heads_per_partition = dist_utils.divide(
num_heads, world_size)
self.qkv = ColumnParallelLinear(input_size=embed_dim,
output_size=3 * projection_size,
quant_config=quant_config)
self.proj = RowParallelLinear(input_size=projection_size,
output_size=embed_dim,
quant_config=quant_config)
# Detect attention implementation.
self.attn_backend: _Backend = get_vit_attn_backend()
if self.attn_backend not in {
_Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS
}:
raise RuntimeError(
f"Qwen2-VL does not support {self.attn_backend} backend now.")
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor = None,
) -> torch.Tensor:
# [s, b, c] --> [s, b, head * 3 * head_dim]
x, _ = self.qkv(x)
# [s, b, head * 3 * head_dim] --> [s, b, head, 3 * head_dim]
new_x_shape = x.size()[:-1] + (
self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head,
)
x = x.view(*new_x_shape)
# [s, b, head, 3 * head_dim] --> 3 [s, b, head, head_dim]
q, k, v = dist_utils.split_tensor_along_last_dim(x, 3)
batch_size = q.shape[1]
q, k, v = [
rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v)
]
if rotary_pos_emb is not None:
q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
if self.attn_backend == _Backend.FLASH_ATTN:
# from vllm_flash_attn.flash_attn_interface import (
# flash_attn_varlen_func)
from flash_attn import flash_attn_varlen_func
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
output = flash_attn_varlen_func(q,
k,
v,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=0,
causal=False)
context_layer = rearrange(output,
"(b s) ... -> b s ...",
b=batch_size)
elif self.attn_backend == _Backend.TORCH_SDPA:
seq_length = q.size(1)
q, k, v = [rearrange(x, "b s h d -> b h s d") for x in [q, k, v]]
attention_mask = torch.zeros([1, seq_length, seq_length],
device=q.device,
dtype=torch.bool)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1]:cu_seqlens[i],
cu_seqlens[i - 1]:cu_seqlens[i]] = True
output = F.scaled_dot_product_attention(q,
k,
v,
attention_mask,
dropout_p=0.0)
context_layer = rearrange(output, "b h s d -> b s h d ")
elif self.attn_backend == _Backend.XFORMERS:
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
kv_seqlen=None)
context_layer = xops.memory_efficient_attention_forward(
q, k, v, attn_bias=attn_bias, p=0, scale=None)
context_layer = rearrange(context_layer,
"b s h d -> s b (h d)").contiguous()
output, _ = self.proj(context_layer)
return output
class Qwen2VisionBlock(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float,
act_layer: Type[nn.Module] = QuickGELU,
norm_layer: Type[nn.Module] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.attn = Qwen2VisionAttention(embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config)
self.mlp = Qwen2VisionMLP(dim,
mlp_hidden_dim,
act_layer=act_layer,
quant_config=quant_config)
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.norm1(x),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb)
x = x + self.mlp(self.norm2(x))
return x
class Qwen2VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_chans: int = 3,
embed_dim: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = nn.Conv3d(in_chans,
embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
L, C = x.shape
x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
self.patch_size)
x = self.proj(x).view(L, self.embed_dim)
return x
class Qwen2VisionPatchMerger(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
norm_layer: Type[nn.Module] = None,
spatial_merge_size: int = 2,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.ln_q = norm_layer(context_dim)
self.mlp = nn.ModuleList([
ColumnParallelLinear(self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config),
nn.GELU(),
RowParallelLinear(self.hidden_size,
d_model,
bias=True,
quant_config=quant_config),
])
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x)
x = x.view(-1, self.hidden_size)
mlp_fc1, mlp_act, mlp_fc2 = self.mlp
x_parallel, _ = mlp_fc1(x)
x_parallel = mlp_act(x_parallel)
out, _ = mlp_fc2(x_parallel)
return out
class Qwen2VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.theta = theta
inv_freq = 1.0 / (theta
**(torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = 0
self._freqs_cached = None
def update_freqs_cache(self, seqlen: int) -> None:
if seqlen > self._seq_len_cached:
seqlen *= 2
self._seq_len_cached = seqlen
self.inv_freq = 1.0 / (self.theta**(torch.arange(
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
/ self.dim))
seq = torch.arange(seqlen,
device=self.inv_freq.device,
dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
self._freqs_cached = freqs
def forward(self, seqlen: int) -> torch.Tensor:
self.update_freqs_cache(seqlen)
return self._freqs_cached[:seqlen]
class Qwen2VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen2VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
patch_size: int = vision_config.patch_size
temporal_patch_size: int = vision_config.temporal_patch_size
spatial_merge_size: int = vision_config.spatial_merge_size
in_chans: int = vision_config.in_chans
hidden_size: int = vision_config.hidden_size
embed_dim: int = vision_config.embed_dim
depth: int = vision_config.depth
num_heads: int = vision_config.num_heads
mlp_ratio: float = vision_config.mlp_ratio
self.spatial_merge_size = spatial_merge_size
self.patch_embed = Qwen2VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
head_dim = embed_dim // num_heads
self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
Qwen2VisionBlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
quant_config=quant_config,
) for _ in range(depth)
])
self.merger = Qwen2VisionPatchMerger(
d_model=hidden_size,
context_dim=embed_dim,
norm_layer=norm_layer,
quant_config=quant_config,
)
@property
def dtype(self) -> torch.dtype:
return self.blocks[0].mlp.fc2.weight.dtype
@property
def device(self) -> torch.device:
return self.blocks[0].mlp.fc2.weight.device
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
pos_ids.append(
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
# patchify
x = x.to(device=self.device, dtype=self.dtype)
x = self.patch_embed(x)
# compute position embedding
rotary_pos_emb = self.rot_pos_emb(grid_thw)
# compute cu_seqlens
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
grid_thw[:, 0]).cumsum(
dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# transformers
x = x.unsqueeze(1)
for blk in self.blocks:
x = blk(x, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
# adapter
x = self.merger(x)
return x
# === Vision input helpers === #
cached_get_processor = lru_cache(get_processor)
def mm_input_mapper_for_qwen2_vl(
ctx: InputContext,
data: MultiModalData[object],
data_type_key: str,
) -> MultiModalInputs:
"""Input mapper for Qwen2-VL."""
if data_type_key == "image" and isinstance(data, dict):
return MultiModalInputs({
"image_embeds": data.get("image_embeds"),
"image_grid_thw": data.get("image_grid_thw"),
})
model_config = ctx.model_config
image_processor = cached_get_image_processor(
model_config.model, trust_remote_code=model_config.trust_remote_code)
if image_processor is None:
raise RuntimeError("No HuggingFace processor is available "
"to process the image object")
images = None
videos = None
if data_type_key == "image":
images = data
else:
assert data_type_key == "video"
videos = data
try:
batch_data = image_processor \
.preprocess(images=images, videos=videos, return_tensors="pt") \
.data
except Exception:
logger.error("Failed to process image (%s)", data)
raise
return MultiModalInputs(batch_data)
image_input_mapper_for_qwen2_vl = partial(mm_input_mapper_for_qwen2_vl,
data_type_key="image")
video_input_mapper_for_qwen2_vl = partial(mm_input_mapper_for_qwen2_vl,
data_type_key="video")
def _get_vision_info(
image_processor,
height: int,
width: int,
min_pixels: int,
max_pixels: int,
do_resize: bool = True,
data_type_key: str = "image",
mm_count: int = 1,
):
"""Get information (resized height / width and number of vision tokens)
of input image / video frame."""
if do_resize:
resized_height, resized_width = smart_resize(
height=height,
width=width,
factor=image_processor.patch_size * image_processor.merge_size,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
else:
resized_height, resized_width = height, width
if data_type_key == "image":
grid_t = mm_count
else:
assert data_type_key == "video"
grid_t = max(mm_count // image_processor.temporal_patch_size, 1)
grid_h = resized_height // image_processor.patch_size
grid_w = resized_width // image_processor.patch_size
vision_tokens = grid_t * grid_h * grid_w
llm_num_vision_tokens = (vision_tokens // image_processor.merge_size //
image_processor.merge_size)
return resized_height, resized_width, llm_num_vision_tokens
def _get_max_image_info(
image_processor,
data_type_key: str = "image",
mm_count: int = 1,
):
return _get_vision_info(
image_processor,
height=9999999,
width=9999999,
# Limit min / max pixels.
min_pixels=max(image_processor.min_pixels, 28 * 28),
max_pixels=min(image_processor.max_pixels, 1280 * 28 * 28),
data_type_key=data_type_key,
mm_count=mm_count,
)
def get_max_qwen2_vl_mm_tokens(ctx: InputContext, data_type_key: str) -> int:
image_processor = cached_get_image_processor(ctx.model_config.model)
max_resized_height, max_resized_width, max_llm_image_tokens = \
_get_max_image_info(image_processor, data_type_key=data_type_key,
mm_count=1)
return max_llm_image_tokens
get_max_qwen2_vl_image_tokens = partial(get_max_qwen2_vl_mm_tokens,
data_type_key="image")
get_max_qwen2_vl_video_tokens = partial(get_max_qwen2_vl_mm_tokens,
data_type_key="video")
def dummy_data_for_qwen2_vl(
ctx: InputContext, seq_len: int, mm_counts: Mapping[str, int]
) -> Tuple[SequenceData, Optional[MultiModalDataDict]]:
image_processor = cached_get_image_processor(ctx.model_config.model)
num_images = mm_counts["image"]
max_resized_height, max_resized_width, max_llm_image_tokens = \
_get_max_image_info(image_processor, data_type_key="image",
mm_count=num_images)
if seq_len - max_llm_image_tokens - 2 < 0:
raise RuntimeError(
f"Qwen2-VL cannot process {num_images} images in a prompt, "
"please increase max_model_len or reduce image limit by "
"--limit-mm-per-prompt.")
# Check video counts.
num_videos = mm_counts["video"]
max_resized_height, max_resized_width, max_llm_video_tokens = \
_get_max_image_info(image_processor, data_type_key="video",
mm_count=num_videos)
if seq_len - max_llm_video_tokens - 2 < 0:
raise RuntimeError(
f"Qwen2-VL cannot process {num_images} videos in a prompt, "
"please increase max_model_len or reduce video limit by "
"--limit-mm-per-prompt.")
hf_config = ctx.get_hf_config(Qwen2VLConfig)
2024-10-16 18:49:37 +08:00
dummy_seqdata = SequenceData.from_prompt_token_counts(
(hf_config.vision_start_token_id, 1),
(hf_config.image_token_id, max_llm_image_tokens),
(hf_config.vision_end_token_id, 1),
(0, seq_len - max_llm_image_tokens - 2),
)
dummy_image = Image.new("RGB", (max_resized_width, max_resized_height),
color=0)
return dummy_seqdata, {
"image": dummy_image if num_images == 1 else [dummy_image] * num_images
}
def _get_llm_num_vision_tokens(
mm_inputs: list,
data_type_key: str,
image_processor,
):
"""Get number of vision tokens of multimodal inputs.
This method is derived from `transformers.models.qwen2_vl.
image_processing_qwen2_vl.Qwen2VLImageProcessor._preprocess`.
"""
image = to_numpy_array(mm_inputs[0])
input_data_format = infer_channel_dimension_format(image)
height, width = get_image_size(image, channel_dim=input_data_format)
_, _, llm_num_vision_tokens = _get_vision_info(
image_processor,
height=height,
width=width,
min_pixels=image_processor.min_pixels,
max_pixels=image_processor.max_pixels,
do_resize=image_processor.do_resize,
data_type_key=data_type_key,
mm_count=len(mm_inputs),
)
return llm_num_vision_tokens
def _expand_pad_tokens(inputs: list, token_id: int, make_batched_fn: Callable,
data_type_key: str, image_processor: Any,
prompt_token_ids: List[int]) -> List[int]:
"""
Expand pad tokens for multi-modal inputs (e.g., images or videos).
Args:
inputs (list): The multi-modal inputs (e.g., images or videos).
token_id (int): The token ID used to represent the multi-modal input.
make_batched_fn (Callable): A function to batch the inputs.
data_type_key (str): The type of the multi-modal input.
image_processor (Any): The image processor used to process the inputs.
prompt_token_ids (List[int]): The list of token IDs in the prompt.
Returns:
List[int]: The list of token IDs for the multi-modal inputs.
"""
indices = [
idx for idx, token in enumerate(prompt_token_ids) if token == token_id
]
inputs = make_batched_fn(inputs)
assert len(indices) == len(inputs)
prompt_token_ids_with_data = []
for cnt, data in enumerate(inputs):
num_tokens = _get_llm_num_vision_tokens(
[data] if data_type_key == "image" else data,
data_type_key=data_type_key,
image_processor=image_processor,
)
if cnt == 0:
end_idx = indices[cnt]
non_data_tokens = prompt_token_ids[:end_idx]
else:
non_data_tokens = prompt_token_ids[indices[cnt - 1] +
1:indices[cnt]]
prompt_token_ids_with_data.extend(non_data_tokens)
prompt_token_ids_with_data.extend(token_id for _ in range(num_tokens))
prompt_token_ids_with_data.extend(prompt_token_ids[indices[-1] + 1:])
return prompt_token_ids_with_data
2024-10-16 18:49:37 +08:00
def input_processor_for_qwen2_vl(
ctx: InputContext,
inputs: DecoderOnlyInputs,
) -> DecoderOnlyInputs:
multi_modal_data = inputs.get("multi_modal_data", None)
if multi_modal_data is None:
2024-10-16 18:49:37 +08:00
return inputs
image_inputs = multi_modal_data.get("image", None)
video_inputs = multi_modal_data.get("video", None)
processor = cached_get_processor(ctx.model_config.model)
image_processor = processor.image_processor
hf_config = ctx.get_hf_config(Qwen2VLConfig)
# To avoid redundant processing of vision objects (resize, rescale, etc.),
# we extract code of calculating number of vision tokens from
# `transformers.models.qwen2_vl.processing_qwen2_vl.Qwen2VLProcessor`.
#
# The following code is equivalent to:
2024-10-16 18:49:37 +08:00
# prompt = inputs["prompt"]
# inputs = processor(text=[prompt],
# images=image_inputs,
# videos=video_inputs,
# padding=True,
# return_tensors="pt")
# prompt_token_ids = inputs["input_ids"][0].tolist()
2024-10-16 18:49:37 +08:00
prompt_token_ids = inputs.get("prompt_token_ids", None)
if prompt_token_ids is None:
2024-10-16 18:49:37 +08:00
prompt = inputs["prompt"]
prompt_token_ids = processor.tokenizer(
prompt,
padding=True,
return_tensors=None,
)["input_ids"]
# Expand image pad tokens.
if image_inputs is not None:
if isinstance(image_inputs, dict):
prompt_token_ids_with_image = []
image_indices = [
idx for idx, token in enumerate(prompt_token_ids)
if token == hf_config.image_token_id
]
image_cnt = len(image_indices)
embed_dim = image_inputs.get('image_embeds').size(0)
assert embed_dim % image_cnt == 0
num_pad_tokens = embed_dim // image_cnt
for idx, token in enumerate(prompt_token_ids):
if idx in image_indices:
prompt_token_ids_with_image.extend([token] *
num_pad_tokens)
else:
prompt_token_ids_with_image.append(token)
prompt_token_ids = prompt_token_ids_with_image
else:
prompt_token_ids = _expand_pad_tokens(image_inputs,
hf_config.image_token_id,
make_batched_images, "image",
image_processor,
prompt_token_ids)
if video_inputs is not None:
prompt_token_ids = _expand_pad_tokens(video_inputs,
hf_config.video_token_id,
make_batched_videos, "video",
image_processor,
prompt_token_ids)
2024-10-16 18:49:37 +08:00
return token_inputs(
prompt_token_ids=prompt_token_ids,
2024-10-16 18:49:37 +08:00
prompt=inputs["prompt"],
multi_modal_data=multi_modal_data,
)
@MULTIMODAL_REGISTRY.register_image_input_mapper(
image_input_mapper_for_qwen2_vl)
@MULTIMODAL_REGISTRY.register_input_mapper("video",
video_input_mapper_for_qwen2_vl)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_qwen2_vl_image_tokens)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
"video", get_max_qwen2_vl_video_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_qwen2_vl)
@INPUT_REGISTRY.register_input_processor(input_processor_for_qwen2_vl)
class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self,
config: Qwen2VLConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
assert not cache_config.enable_prefix_caching, \
"Qwen2-VL currently does not support prefix caching"
self.config = config
self.multimodal_config = multimodal_config
self.visual = Qwen2VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
# NOTE: Qwen2-VL vision encoder does not support any
# quantization method now.
quant_config=None,
)
self.model = Qwen2Model(config, cache_config, quant_config)
if get_pp_group().is_last_rank:
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def _validate_and_reshape_mm_tensor(self,
mm_input: Union[torch.Tensor,
List[torch.Tensor]],
name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. "
f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
if mm_input.ndim == 2:
return mm_input
if mm_input.ndim != 3:
raise ValueError(f"{name} should be 2D or batched 3D tensor. "
f"Got ndim: {mm_input.ndim}")
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[Qwen2VLImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
pixel_values = self._validate_and_reshape_mm_tensor(
pixel_values, "image pixel values")
image_grid_thw = self._validate_and_reshape_mm_tensor(
image_grid_thw, "image grid_thw")
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of image pixel values. "
f"Got type: {type(pixel_values)}")
return Qwen2VLImagePixelInputs(type="pixel_values",
data=pixel_values,
image_grid_thw=image_grid_thw)
if image_embeds is not None:
image_embeds = self._validate_and_reshape_mm_tensor(
image_embeds, "image embeds")
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return Qwen2VLImageEmbeddingInputs(type="image_embeds",
data=image_embeds)
def _parse_and_validate_video_input(
self, **kwargs: object) -> Optional[Qwen2VLVideoInputs]:
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
video_grid_thw = kwargs.pop("video_grid_thw", None)
if pixel_values_videos is None:
return None
pixel_values_videos = self._validate_and_reshape_mm_tensor(
pixel_values_videos, "video pixel values")
video_grid_thw = self._validate_and_reshape_mm_tensor(
video_grid_thw, "video grid_thw")
return Qwen2VLVideoInputs(
pixel_values_videos=pixel_values_videos,
video_grid_thw=video_grid_thw,
)
def _process_image_input(self,
image_input: Qwen2VLImageInputs) -> torch.Tensor:
if image_input["type"] == "image_embeds":
return image_input["data"].type(self.visual.dtype)
pixel_values = image_input["data"].type(self.visual.dtype)
image_embeds = self.visual(pixel_values,
grid_thw=image_input["image_grid_thw"])
return image_embeds
def _process_video_input(self,
video_input: Qwen2VLVideoInputs) -> torch.Tensor:
pixel_values_videos = video_input["pixel_values_videos"].type(
self.visual.dtype)
video_embeds = self.visual(pixel_values_videos,
grid_thw=video_input["video_grid_thw"])
return video_embeds
def _merge_multimodal_embeddings(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
multimodal_embeddings: torch.Tensor,
placeholder_token_id: int,
) -> torch.Tensor:
mask = (input_ids == placeholder_token_id)
inputs_embeds[mask, :] = multimodal_embeddings
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for Qwen2-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
pixel_values: Pixel values to be fed to a model.
`None` if no images are passed.
image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
`None` if no images are passed.
pixel_values_videos: Pixel values of videos to be fed to a model.
`None` if no videos are passed.
video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
`None` if no videos are passed.
"""
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
image_input = self._parse_and_validate_image_input(**kwargs)
video_input = self._parse_and_validate_video_input(**kwargs)
if image_input is None and video_input is None:
inputs_embeds = None
else:
if uses_mrope(self.config):
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}")
inputs_embeds = self.model.embed_tokens(input_ids)
if image_input is not None:
image_embeds = self._process_image_input(image_input)
inputs_embeds = self._merge_multimodal_embeddings(
input_ids,
inputs_embeds,
image_embeds,
placeholder_token_id=self.config.image_token_id,
)
if video_input is not None:
video_embeds = self._process_video_input(video_input)
inputs_embeds = self._merge_multimodal_embeddings(
input_ids,
inputs_embeds,
video_embeds,
placeholder_token_id=self.config.video_token_id,
)
input_ids = None
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "up_proj", 1),
("gate_up_proj", "gate_proj", 0),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if "visual" in name and "qkv.weight" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.embed_dim
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(3, visual_num_heads,
head_size,
visual_embed_dim)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, visual_embed_dim)
elif "visual" in name and "qkv.bias" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.embed_dim
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(3, visual_num_heads,
head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
try:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
except KeyError:
raise ValueError(f"Unexpected weight: {name}") from None
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)